The presence of phthalic acid esters (PAEs) in marine environments is an important issue. These chemicals are able to affect marine organisms, particularly marine turtles, and to act as endocrine disrupters. In this paper, for the first time, a simple and reproducible analytical method based on solid-phase extraction (SPE) coupled with gas chromatography—ion trap/mass spectrometry (GC-IT/MS) was developed for the extraction of phthalates from the blood of marine turtles. The extraction was obtained by using C18 phthalates-free as the stationary phase. In order to individ-uate the best working conditions for the extraction, the adsorption isotherms and breakthrough curves were studied. The overall analytical methodology was validated in terms of limit of detection (LOD, 0.08–0.6 ng mL−1), limit of quantification (LOQ, 0.4–0.8 ng mL−1), and correlation coefficients (>0.9933). By using this procedure, percentage recoveries ranging from 89 to 103% were achieved. The precision parameters (intra-day and inter-day) were studied, and the obtained values were smaller than 12.5%. These data confirm the goodness of the proposed analytical methodology, which is applied to real samples.
Fast and reliable determination of phthalic acid esters in the blood of marine turtles by means of solid phase extraction coupled with gas chromatography-ion trap/mass spectrometry
Notardonato I.;Di Fiore C.;Iannone A.;Russo M. V.;Avino P.
Ultimo
2021-01-01
Abstract
The presence of phthalic acid esters (PAEs) in marine environments is an important issue. These chemicals are able to affect marine organisms, particularly marine turtles, and to act as endocrine disrupters. In this paper, for the first time, a simple and reproducible analytical method based on solid-phase extraction (SPE) coupled with gas chromatography—ion trap/mass spectrometry (GC-IT/MS) was developed for the extraction of phthalates from the blood of marine turtles. The extraction was obtained by using C18 phthalates-free as the stationary phase. In order to individ-uate the best working conditions for the extraction, the adsorption isotherms and breakthrough curves were studied. The overall analytical methodology was validated in terms of limit of detection (LOD, 0.08–0.6 ng mL−1), limit of quantification (LOQ, 0.4–0.8 ng mL−1), and correlation coefficients (>0.9933). By using this procedure, percentage recoveries ranging from 89 to 103% were achieved. The precision parameters (intra-day and inter-day) were studied, and the obtained values were smaller than 12.5%. These data confirm the goodness of the proposed analytical methodology, which is applied to real samples.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.