The "Trojan horse effect" of microplastics for organic and inorganic contaminants is an interesting topic. So far, the scientific community has focused on microplastics strictly as contaminants, but their role as vectors is still undefined. Adsorption of pollutants follows the Freundlich model by physisorption mechanism. Furthermore, ages and types of microplastics influence the adsorption of pollutants onto microplastics. Moreover, natural particles, like algae particles, present in the environment can interfere in the adsorption mechanisms. Due to their chemical composition of mainly O and N, it has been suggested that natural particles have a stronger adsorption affinity for some pollutants. Furthermore, microplastic's role as vector of pollutants into organisms is controversial. In fact, it has been suggested that the release is species-specific. In T. japonicus, accumulation of Hg loaded onto microplastics increased by 2.5 times, whereas a reduction of bioavailability of Hg was observed in R. lens.
Trojan horse effects of microplastics: A mini-review about their role as a vector of organic and inorganic compounds in several matrices
Carriera, FabianaPrimo
;Di Fiore, Cristina
;Avino, PasqualeUltimo
2023-01-01
Abstract
The "Trojan horse effect" of microplastics for organic and inorganic contaminants is an interesting topic. So far, the scientific community has focused on microplastics strictly as contaminants, but their role as vectors is still undefined. Adsorption of pollutants follows the Freundlich model by physisorption mechanism. Furthermore, ages and types of microplastics influence the adsorption of pollutants onto microplastics. Moreover, natural particles, like algae particles, present in the environment can interfere in the adsorption mechanisms. Due to their chemical composition of mainly O and N, it has been suggested that natural particles have a stronger adsorption affinity for some pollutants. Furthermore, microplastic's role as vector of pollutants into organisms is controversial. In fact, it has been suggested that the release is species-specific. In T. japonicus, accumulation of Hg loaded onto microplastics increased by 2.5 times, whereas a reduction of bioavailability of Hg was observed in R. lens.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.