In recent years, the scientific interest in natural compounds with geroprotective activities has grown exponentially. Among the various naturally derived molecules, astaxanthin (ASX) represents a highly promising candidate geroprotector. By virtue of the central polyene chain, ASX acts as a scavenger of free radicals in the internal membrane layer and simultaneously controls oxidation on the membrane surface. Moreover, several studies have highlighted ASX's ability to modulate numerous biological mechanisms at the cellular level, including the modulation of transcription factors and genes directly linked to longevity-related pathways. One of the main relevant evolutionarily-conserved transcription factors modulated by astaxanthin is the forkhead box O3 gene (FOXO3), which has been recognized as a critical controller of cell fate and function. Moreover, FOXO3 is one of only two genes shown to robustly a_ect human longevity. Due to its tropism in the brain, ASX has recently been studied as a putative neuroprotective molecule capable of delaying or preventing brain aging in difierent experimental models of brain damage or neurodegenerative diseases. Astaxanthin has been observed to slow down brain aging by increasing brain-derived neurotrophic factor (BDNF) levels in the brain, attenuating oxidative damage to lipids, protein, and DNA and protecting mitochondrial functions. Emerging data now suggest that ASX can modulate Nrf2, FOXO3, Sirt1, and Klotho proteins that are linked to longevity. Together, these mechanisms provide support for a role of ASX as a potential geroneuroprotector.

Astaxanthin as a Putative Geroprotector: Molecular Basis and Focus on Brain Aging

Davinelli S.;Scapagnini G.;
2020-01-01

Abstract

In recent years, the scientific interest in natural compounds with geroprotective activities has grown exponentially. Among the various naturally derived molecules, astaxanthin (ASX) represents a highly promising candidate geroprotector. By virtue of the central polyene chain, ASX acts as a scavenger of free radicals in the internal membrane layer and simultaneously controls oxidation on the membrane surface. Moreover, several studies have highlighted ASX's ability to modulate numerous biological mechanisms at the cellular level, including the modulation of transcription factors and genes directly linked to longevity-related pathways. One of the main relevant evolutionarily-conserved transcription factors modulated by astaxanthin is the forkhead box O3 gene (FOXO3), which has been recognized as a critical controller of cell fate and function. Moreover, FOXO3 is one of only two genes shown to robustly a_ect human longevity. Due to its tropism in the brain, ASX has recently been studied as a putative neuroprotective molecule capable of delaying or preventing brain aging in difierent experimental models of brain damage or neurodegenerative diseases. Astaxanthin has been observed to slow down brain aging by increasing brain-derived neurotrophic factor (BDNF) levels in the brain, attenuating oxidative damage to lipids, protein, and DNA and protecting mitochondrial functions. Emerging data now suggest that ASX can modulate Nrf2, FOXO3, Sirt1, and Klotho proteins that are linked to longevity. Together, these mechanisms provide support for a role of ASX as a potential geroneuroprotector.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/96990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact