We present a new more flexible definition of interacting Fock space that allows to resolve in full generality the problem of embeddability. We show that the same is not possible for regularity. We apply embeddability to classify interacting Fock spaces by squeezings. We give necessary and sufficient criteria for when an interacting Fock space has only bounded creators, giving thus rise to new classes of non-selfadjoint and selfadjoint operator algebras.
Interacting Fock spaces and subproduct systems
Skeide M.
Co-primo
2020-01-01
Abstract
We present a new more flexible definition of interacting Fock space that allows to resolve in full generality the problem of embeddability. We show that the same is not possible for regularity. We apply embeddability to classify interacting Fock spaces by squeezings. We give necessary and sufficient criteria for when an interacting Fock space has only bounded creators, giving thus rise to new classes of non-selfadjoint and selfadjoint operator algebras.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.