We present a new more flexible definition of interacting Fock space that allows to resolve in full generality the problem of embeddability. We show that the same is not possible for regularity. We apply embeddability to classify interacting Fock spaces by squeezings. We give necessary and sufficient criteria for when an interacting Fock space has only bounded creators, giving thus rise to new classes of non-selfadjoint and selfadjoint operator algebras.

Interacting Fock spaces and subproduct systems

Skeide M.
Co-primo
2020-01-01

Abstract

We present a new more flexible definition of interacting Fock space that allows to resolve in full generality the problem of embeddability. We show that the same is not possible for regularity. We apply embeddability to classify interacting Fock spaces by squeezings. We give necessary and sufficient criteria for when an interacting Fock space has only bounded creators, giving thus rise to new classes of non-selfadjoint and selfadjoint operator algebras.
https://www.worldscientific.com/doi/10.1142/S0219025720500174
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/96056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact