The tight coordination between mitochondrial biogenesis and mitophagy can be dysregulated during aging, critically influencing whole-body metabolism, health, and lifespan. To date, caloric restriction (CR) appears to be the most effective intervention strategy to improve mitochondrial turnover in aging organisms. The development of pharmacological mimetics of CR has gained attention as an attractive and potentially feasible approach to mimic the CR phenotype. Polyphenols, ubiquitously present in fruits and vegetables, have emerged as well-tolerated CR mimetics that target mitochondrial turnover. Here, we discuss the molecular mechanisms that orchestrate mitochondrial biogenesis and mitophagy, and we summarize the current knowledge of how CR promotes mitochondrial maintenance and to what extent different polyphenols may mimic CR and coordinate mitochondrial biogenesis and clearance.
Polyphenols as Caloric Restriction Mimetics Regulating Mitochondrial Biogenesis and Mitophagy
Davinelli S.
;Scapagnini G.
2020-01-01
Abstract
The tight coordination between mitochondrial biogenesis and mitophagy can be dysregulated during aging, critically influencing whole-body metabolism, health, and lifespan. To date, caloric restriction (CR) appears to be the most effective intervention strategy to improve mitochondrial turnover in aging organisms. The development of pharmacological mimetics of CR has gained attention as an attractive and potentially feasible approach to mimic the CR phenotype. Polyphenols, ubiquitously present in fruits and vegetables, have emerged as well-tolerated CR mimetics that target mitochondrial turnover. Here, we discuss the molecular mechanisms that orchestrate mitochondrial biogenesis and mitophagy, and we summarize the current knowledge of how CR promotes mitochondrial maintenance and to what extent different polyphenols may mimic CR and coordinate mitochondrial biogenesis and clearance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.