Two new beta -glucanase-encoding genes, EXG2 and MLG2, were isolated from the plant-pathogenic fungus Cochliobolus carbonum using polymerase chain reaction based on amino acid sequences from the purified proteins. EXG2 encodes a 46.6-kDa exo-beta1,3-glucanase and is located on the same 3.5-Mb chromosome that contains the genes of HC-toxin biosynthesis. MLG2 encodes a 26.8-kDa mixed linked (beta1,3-beta1,4) glucanase with low activity against beta1,4-glucan and no activity against beta1,3-glucan. Specific mutants of EXG2 and MLG2 were constructed by targeted gene replacement. Strains with multiple mutations (genotypes exg1/mlg1, exg2/mlg1, mlg1/mlg2, and exg1/exg2/mlg1/mlg2) were also constructed by sequential disruption and by crossing. Total mixed-linked glucanase activity in culture filtrates of mlg1/mlg2 and exg1/exg2/mlg1/mlg2 mutants was reduced by approximately 73%. Total beta1,3-glucanase activity was reduced by 10, 54, and 96% in exg2, mlg1, and exg1/exg2/mlg1/mlg2 mutants, respectively. The quadruple mutant showed only a modest decrease in growth on beta1,3-glucan or mixed-linked glucan. None of the mutants showed any decrease in virulence.

Mutational analysis of β-glucanase genes, EXG2 and MLG2, from the plant pathogenic fungus Cochliobolus carbonum

CAPRARI, Claudio;
2001-01-01

Abstract

Two new beta -glucanase-encoding genes, EXG2 and MLG2, were isolated from the plant-pathogenic fungus Cochliobolus carbonum using polymerase chain reaction based on amino acid sequences from the purified proteins. EXG2 encodes a 46.6-kDa exo-beta1,3-glucanase and is located on the same 3.5-Mb chromosome that contains the genes of HC-toxin biosynthesis. MLG2 encodes a 26.8-kDa mixed linked (beta1,3-beta1,4) glucanase with low activity against beta1,4-glucan and no activity against beta1,3-glucan. Specific mutants of EXG2 and MLG2 were constructed by targeted gene replacement. Strains with multiple mutations (genotypes exg1/mlg1, exg2/mlg1, mlg1/mlg2, and exg1/exg2/mlg1/mlg2) were also constructed by sequential disruption and by crossing. Total mixed-linked glucanase activity in culture filtrates of mlg1/mlg2 and exg1/exg2/mlg1/mlg2 mutants was reduced by approximately 73%. Total beta1,3-glucanase activity was reduced by 10, 54, and 96% in exg2, mlg1, and exg1/exg2/mlg1/mlg2 mutants, respectively. The quadruple mutant showed only a modest decrease in growth on beta1,3-glucan or mixed-linked glucan. None of the mutants showed any decrease in virulence.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/918
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
social impact