Enormous progress has been made in the selection of animals for specific traits using traditional quantitative genetic approaches. Nevertheless, a considerable amount of variation in phenotypes remains unexplained therefore a better knowledge of its genetic basis represents a potential additional gain for animal production. In this regard, the recently developed high-throughput (HT) technologies based on microarray and next-generation sequencing (NGS) methods are a powerful opportunity to prise open the ‘black box’ underlying complex biological processes. These technological advancements have marked the beginning of the ‘omic era’. Broadly, ‘omic’ approaches adopt a holistic view of the molecules that make up a cell, tissue or organism. They are aimed primarily at the universal detection of genes (genomics), RNA (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in a specific biological sample. The basic aspect of these approaches is that a complex system can be understood more thoroughly if considered as a whole. At the same time, the large amount of data generated by these revolutionary approaches makes sense only if one is equipped with the necessary resources and tools to manage and explore it. For this reason, along with HT technical progresses, bioinformatics, often known as computational biology, is gaining immense importance. Animal breeding is gaining new momentum from this renewed scenario. Particularly it pushed to move away from traditional approaches toward systems approaches using integrative analysis of ‘omic’ data to better elucidate the genetic architecture controlling the traits of interest and ultimately use this knowledge for selection of candidates. The aim of this thesis is to (1) investigate the differences of genetic basis related to the milk fatty acids profiles in two Italian dairy cattle breeds and (2) delineate the genes and transcription regulators implicated in the control of the transition from colostrogenesis to lactogenesis in swine, using the state-of-art genomic and transcriptomic analyses. For these reasons, a genome-wide association study (GWAS) on milk fatty acids of Italian Holstein and Italian Simmental cattle breads and an RNASeq study on transcriptional profiles of swine mammary gland are conducted, respectively. In addition, (3) an in-house bioinformatics tool performing an original pathway analysis is presented. The tool, entirely built in R and named PIA (Pathways Interaction Analysis), is designed for post-genomic and transcriptomic data mining.

Enormi progressi sono stati fatti nella selezione degli animali per specifici caratteri di interesse zootecnico avvalendosi dei tradizionali approcci di genetica quantitativa. Tuttavia, una considerevole quantità di variabilità fenotipica resta ancora non completamente spiegata; in tal senso una migliore conoscenza delle sue basi molecolari e genetiche rappresenterebbe un ulteriore vantaggio. A tal proposito, il recente sviluppo di tecnologie high-throughput (HT), basate su metodi ad alta specificità di ibridazione e sulle ultime tecniche di sequenziamento (NGS), rappresenta una nuova opportunità per esplorare i più complessi meccanismi biologici. La rapida diffusione di queste tecnologie ha segnato l’inizio dell’era ‘omica’. Gli approcci ‘omici’ si basano sull’analisi complessiva di una specifica classe di molecole contenute in una cellula, un tessuto o un organismo; ovvero sono primariamente indirizzati all’analisi di tutti i geni (genomica), di tutti i trascritti (trascrittomica), di tutte le proteine (proteomica) o di tutti i metaboliti (metabolomica) presenti in un campione biologico. La convizione è che un sistema complesso può essere compreso più a fondo, e più fedelmente, se considerato nella sua globalità. La grandissima mole di dati generata, tuttavia, ha senso soltanto se si è equipaggiati con opportuni strumenti per esplorala. Per questo motivo, di pari passo con tali progressi tecnologici, la bioinformatica, conosciuta anche come biologia computazionale, sta acquisendo progressiva importanza. Anche la zootecnia e il miglioramento genetico si stanno avvalendo delle opportunità offerte da questo nuovo scenario. In particolare, ci si sta spostando dagli approcci tradizionali a quelli che prevedono l’uso integrato di analisi omiche. Ciò permette di meglio investigare e decifrate l’architettura genetica alla base dei caratteri di interesse zootecnico ed utilizzare questa informazione per la selezione dei candidati destinati alla riproduzione. L’obiettivo di questa tesi è stato quello di utilizzare le più innovative analisi genomiche e trascrittomiche per (1) investigare le differenze genetiche alla base del profilo acidico del latte in due razze bovine italiane; (2) individuare i geni e i fattori di trascrizione coinvolti nel controllo della colostrogenesi/lattogenesi suina. A tal fine, sono stati effettuati rispettivamente uno studio di associazione lungo tutto il genoma (GWAS) considerando gli acidi grassi del latte in Frisona e Pezzata Rossa Italiana ed è stato sequenziato il trascrittoma (RNA-Sequencing) di ghiandola mammaria suina. In aggiunta (3) è stato sviluppato un nuovo strumento bioinformatico interamente in R, chiamato PIA (Pathways Interaction Analysis), che consente un’originale analisi delle pathway metaboliche utile ad agevolare l’interpretazione dei risultati genomici e trascrittomici.

Genomics, Transcriptomics and Computational Biology: new insights into bovine and swine breeding and genetics

PALOMBO, VALENTINO
2019-06-10

Abstract

Enormous progress has been made in the selection of animals for specific traits using traditional quantitative genetic approaches. Nevertheless, a considerable amount of variation in phenotypes remains unexplained therefore a better knowledge of its genetic basis represents a potential additional gain for animal production. In this regard, the recently developed high-throughput (HT) technologies based on microarray and next-generation sequencing (NGS) methods are a powerful opportunity to prise open the ‘black box’ underlying complex biological processes. These technological advancements have marked the beginning of the ‘omic era’. Broadly, ‘omic’ approaches adopt a holistic view of the molecules that make up a cell, tissue or organism. They are aimed primarily at the universal detection of genes (genomics), RNA (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in a specific biological sample. The basic aspect of these approaches is that a complex system can be understood more thoroughly if considered as a whole. At the same time, the large amount of data generated by these revolutionary approaches makes sense only if one is equipped with the necessary resources and tools to manage and explore it. For this reason, along with HT technical progresses, bioinformatics, often known as computational biology, is gaining immense importance. Animal breeding is gaining new momentum from this renewed scenario. Particularly it pushed to move away from traditional approaches toward systems approaches using integrative analysis of ‘omic’ data to better elucidate the genetic architecture controlling the traits of interest and ultimately use this knowledge for selection of candidates. The aim of this thesis is to (1) investigate the differences of genetic basis related to the milk fatty acids profiles in two Italian dairy cattle breeds and (2) delineate the genes and transcription regulators implicated in the control of the transition from colostrogenesis to lactogenesis in swine, using the state-of-art genomic and transcriptomic analyses. For these reasons, a genome-wide association study (GWAS) on milk fatty acids of Italian Holstein and Italian Simmental cattle breads and an RNASeq study on transcriptional profiles of swine mammary gland are conducted, respectively. In addition, (3) an in-house bioinformatics tool performing an original pathway analysis is presented. The tool, entirely built in R and named PIA (Pathways Interaction Analysis), is designed for post-genomic and transcriptomic data mining.
10-giu-2019
Enormi progressi sono stati fatti nella selezione degli animali per specifici caratteri di interesse zootecnico avvalendosi dei tradizionali approcci di genetica quantitativa. Tuttavia, una considerevole quantità di variabilità fenotipica resta ancora non completamente spiegata; in tal senso una migliore conoscenza delle sue basi molecolari e genetiche rappresenterebbe un ulteriore vantaggio. A tal proposito, il recente sviluppo di tecnologie high-throughput (HT), basate su metodi ad alta specificità di ibridazione e sulle ultime tecniche di sequenziamento (NGS), rappresenta una nuova opportunità per esplorare i più complessi meccanismi biologici. La rapida diffusione di queste tecnologie ha segnato l’inizio dell’era ‘omica’. Gli approcci ‘omici’ si basano sull’analisi complessiva di una specifica classe di molecole contenute in una cellula, un tessuto o un organismo; ovvero sono primariamente indirizzati all’analisi di tutti i geni (genomica), di tutti i trascritti (trascrittomica), di tutte le proteine (proteomica) o di tutti i metaboliti (metabolomica) presenti in un campione biologico. La convizione è che un sistema complesso può essere compreso più a fondo, e più fedelmente, se considerato nella sua globalità. La grandissima mole di dati generata, tuttavia, ha senso soltanto se si è equipaggiati con opportuni strumenti per esplorala. Per questo motivo, di pari passo con tali progressi tecnologici, la bioinformatica, conosciuta anche come biologia computazionale, sta acquisendo progressiva importanza. Anche la zootecnia e il miglioramento genetico si stanno avvalendo delle opportunità offerte da questo nuovo scenario. In particolare, ci si sta spostando dagli approcci tradizionali a quelli che prevedono l’uso integrato di analisi omiche. Ciò permette di meglio investigare e decifrate l’architettura genetica alla base dei caratteri di interesse zootecnico ed utilizzare questa informazione per la selezione dei candidati destinati alla riproduzione. L’obiettivo di questa tesi è stato quello di utilizzare le più innovative analisi genomiche e trascrittomiche per (1) investigare le differenze genetiche alla base del profilo acidico del latte in due razze bovine italiane; (2) individuare i geni e i fattori di trascrizione coinvolti nel controllo della colostrogenesi/lattogenesi suina. A tal fine, sono stati effettuati rispettivamente uno studio di associazione lungo tutto il genoma (GWAS) considerando gli acidi grassi del latte in Frisona e Pezzata Rossa Italiana ed è stato sequenziato il trascrittoma (RNA-Sequencing) di ghiandola mammaria suina. In aggiunta (3) è stato sviluppato un nuovo strumento bioinformatico interamente in R, chiamato PIA (Pathways Interaction Analysis), che consente un’originale analisi delle pathway metaboliche utile ad agevolare l’interpretazione dei risultati genomici e trascrittomici.
Genomics; Transcriptomics; Bioinformatics; Animal breeding; Genetics
File in questo prodotto:
File Dimensione Formato  
Tesi_V_Palombo.pdf

Open Access dal 11/12/2020

Descrizione: Tesi di dottorato
Dimensione 8.2 MB
Formato Adobe PDF
8.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/91489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact