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Abstract 

Enormi progressi sono stati fatti nella selezione degli animali per specifici caratteri di interesse 

zootecnico avvalendosi dei tradizionali approcci di genetica quantitativa. Tuttavia, una 

considerevole quantità di variabilità fenotipica resta ancora non completamente spiegata; in tal 

senso una migliore conoscenza delle sue basi molecolari e genetiche rappresenterebbe un 

ulteriore vantaggio. A tal proposito, il recente sviluppo di tecnologie high-throughput (HT), 

basate su metodi ad alta specificità di ibridazione e sulle ultime tecniche di sequenziamento 

(NGS), rappresenta una nuova opportunità per esplorare i più complessi meccanismi biologici. 

La rapida diffusione di queste tecnologie ha segnato l’inizio dell’era ‘omica’. Gli approcci 

‘omici’ si basano sull’analisi complessiva di una specifica classe di molecole contenute in una 

cellula, un tessuto o un organismo; ovvero sono primariamente indirizzati all’analisi di tutti i 

geni (genomica), di tutti i trascritti (trascrittomica), di tutte le proteine (proteomica) o di tutti i 

metaboliti (metabolomica) presenti in un campione biologico. La convizione è che un sistema 

complesso può essere compreso più a fondo, e più fedelmente, se considerato nella sua 

globalità. La grandissima mole di dati generata, tuttavia, ha senso soltanto se si è equipaggiati 

con opportuni strumenti per esplorala. Per questo motivo, di pari passo con tali progressi 

tecnologici, la bioinformatica, conosciuta anche come biologia computazionale, sta acquisendo 

progressiva importanza. Anche la zootecnia e il miglioramento genetico si stanno avvalendo 

delle opportunità offerte da questo nuovo scenario. In particolare, ci si sta spostando dagli 

approcci tradizionali a quelli che prevedono l’uso integrato di analisi omiche. Ciò permette di 

meglio investigare e decifrate l’architettura genetica alla base dei caratteri di interesse 

zootecnico ed utilizzare questa informazione per la selezione dei candidati destinati alla 

riproduzione. L’obiettivo di questa tesi è stato quello di utilizzare le più innovative analisi 

genomiche e trascrittomiche per (1) investigare le differenze genetiche alla base del profilo 

acidico del latte in due razze bovine italiane; (2) individuare i geni e i fattori di trascrizione 

coinvolti nel controllo della colostrogenesi/lattogenesi suina. A tal fine, sono stati effettuati 

rispettivamente uno studio di associazione lungo tutto il genoma (GWAS) considerando gli 

acidi grassi del latte in Frisona e Pezzata Rossa Italiana ed è stato sequenziato il trascrittoma 

(RNA-Sequencing) di ghiandola mammaria suina. In aggiunta (3) è stato sviluppato un nuovo 

strumento bioinformatico interamente in R, chiamato PIA (Pathways Interaction Analysis), che 

consente un’originale analisi delle pathway metaboliche utile ad agevolare l’interpretazione dei 

risultati genomici e trascrittomici. 
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1. Abstract 

Enormous progress has been made in the selection of animals for specific traits using traditional 

quantitative genetic approaches. Nevertheless, a considerable amount of variation in 

phenotypes remains unexplained therefore a better knowledge of its genetic basis represents a 

potential additional gain for animal production. In this regard, the recently developed high-

throughput (HT) technologies based on microarray and next-generation sequencing (NGS) 

methods are a powerful opportunity to prise open the ‘black box’ underlying complex biological 

processes. These technological advancements have marked the beginning of the ‘omic era’.  

Broadly, ‘omic’ approaches adopt a holistic view of the molecules that make up a cell, tissue 

or organism. They are aimed primarily at the universal detection of genes (genomics), RNA 

(transcriptomics), proteins (proteomics) and metabolites (metabolomics) in a specific biological 

sample. The basic aspect of these approaches is that a complex system can be understood more 

thoroughly if considered as a whole. At the same time, the large amount of data generated by 

these revolutionary approaches makes sense only if one is equipped with the necessary 

resources and tools to manage and explore it. For this reason, along with HT technical 

progresses, bioinformatics, often known as computational biology, is gaining immense 

importance. 

Animal breeding is gaining new momentum from this renewed scenario. Particularly it pushed 

to move away from traditional approaches toward systems approaches using integrative 

analysis of ‘omic’ data to better elucidate the genetic architecture controlling the traits of 

interest and ultimately use this knowledge for selection of candidates.  

The aim of this thesis is to (1) investigate the differences of genetic basis related to the milk 

fatty acids profiles in two Italian dairy cattle breeds and (2) delineate the genes and transcription 

regulators implicated in the control of the transition from colostrogenesis to lactogenesis in 

swine, using the state-of-art genomic and transcriptomic analyses. For these reasons, a genome-

wide association study (GWAS) on milk fatty acids of Italian Holstein and Italian Simmental 

cattle breads and an RNASeq study on transcriptional profiles of swine mammary gland are 

conducted, respectively. In addition, (3) an in-house bioinformatics tool performing an original 

pathway analysis is presented. The tool, entirely built in R and named PIA (Pathways 

Interaction Analysis), is designed for post-genomic and transcriptomic data mining.  
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2. Contents of the thesis 

This thesis is structured into two general chapters (Introduction and Conclusion) and three core 

chapters containing two studies already published on international peer-reviewed journals and 

one study under review for publication. 

In chapter 2, a GWAS analysis is run to investigate milk fatty acid profile traits in Italian 

Holstein and Italian Simmental breeds. Data are analysed with a well-established method 

implemented in the GenABEL R package and with the MUGBAS gene-based association 

method. Association is investigated between 120K SNPs and 85 fatty acids (as single, 

aggregated or index values). 

In chapter 3, an RNASeq analysis is performed to investigate the mechanism of transition from 

colostrogenesis to lactogenesis in swine. For this reason, the mammary tissue is collected from 

three sows at five different time points close to parturition. Once the transcriptome profile is 

sequenced, gene set enrichment and gene network analyses are performed to uncover the most-

impacted pathways and to identify the transcription regulators (TR) involved. 

In chapter 4, Pathway Interaction Analysis (PIA) package is introduced. PIA is an in-house 

tool, entirely build in R, useful for data mining of genomic and transcriptomic outcomes. In 

particular, PIA helps to infer possible functional candidates among a list of significant genes, 

extending the concept of classical pathway analysis and taking into account the investigation 

of relations among multiple pathways. 

 

3. List of publications 

Genome-wide association study of milk fatty acid composition in Italian Simmental and 

Italian Holstein cows using single nucleotide polymorphism arrays. 

Palombo V, Milanesi M, Sgorlon S, Capomaccio S, Mele M, Nicolazzi E, Ajmone-Marsan P, 

Pilla F, Stefanon B, D'Andrea M. 

J Dairy Sci. 2018 Sep 19. pii: S0022-0302(18)30869-5. doi: 10.3168/jds.2018-14413.  

 

Transcriptional profiling of swine mammary gland during the transition from 

colostrogenesis to lactogenesis using RNA sequencing. 

Palombo V, Loor JJ, D'Andrea M, Vailati-Riboni M, Shahzad K, Krogh U, Theil PK. 

BMC Genomics. 2018 May 3;19(1):322. doi: 10.1186/s12864-018-4719-5. 
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Chapter I - GENERAL INTRODUCTION 

Abstract 

Most genetic progress for quantitative traits in livestock has been made by selection on 

phenotype, i.e. on estimates of breeding values (EBV) derived from phenotype, through the 

application of best linear unbiased prediction (BLUP) methodology. In the second half of the 

20th century, the advent of molecular biology provided new opportunities to enhance 

quantitative genetics and breeding programs. In particular, new advances in animal genotyping 

fostered the development of marker-assisted selection (MAS) and recently of genomic selection 

(GS), producing positive genetic trends in many productive traits and leading ultimately to more 

accurate selection results and a faster genetic improvement across generations. Despite the 

successful integration of DNA information into several breeding programs, much more it is 

expected. In fact, the main traits of interest in livestock production are much more complex 

than expected so a deeper understanding of genome organization and information would further 

increase the accuracy of breeding evaluation. In this regard, fascinating opportunities are 

offered by the revolutionary advent of high-throughput ‘omics’ (HTO) technologies. The 

trademark characteristic of omic approach is its holistic capability: the staple is that a complex 

system can be understood more thoroughly if considered as a whole. This may open up new 

avenues to illuminate the biological mechanisms of important livestock complex traits and to 

explore relationships between genetic variation and phenotypic variability with high resolution.  
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Contents of chapter  

I - 1. Animal breeding 

I - 1.1. Breeding value 

Animal breeding is the selective mating of animals to increase the possibility of obtaining 

desired traits in the offspring and to lead to potential and stable gain for animal production as 

quickly as possible. The objective of livestock breeding has constantly changed since human 

beings began to breed livestock. Nevertheless, one of the goals has always been the acceleration 

of genetic gains to satisfy the demands of production and consumers (Yang et al., 2017), in 

terms of yield and recently also quality of animal products (Hocquette et al., 2005). 

These production-related traits (such as milk yield, fat yield, protein yield, longevity, growth 

rate, fatness, feed intake, etc.) usually include a combination of multiple characteristics most of 

which have a quantitative nature, i.e. controlled by many genes as well as environmental factors 

(Falconer and Mackay, 1996). For this reason, statistical models and selection theory used in 

animal breeding are traditionally based on the so-called infinitesimal genetic model (Falconer 

and Mackay, 1996) that assumes a large (infinite) number of unlinked genes with very small 

and additive effects influencing the trait. 
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In animal breeding, the main criterion to identify candidates for mating (known as candidates 

selection) is the evaluation of their genetic merit, i.e. estimation of breeding values (BV). Based 

on infinitesimal model, the BV of an individual is defined as the sum of the additive effects of 

all loci that contribute to the trait (quantitative trait loci or QTL), deviated from the population 

mean (Falconer and Mackay, 1996). In this regard, extensive databases of recorded phenotypes 

for traits of interest have been used and, along with pedigree information, they traditionally 

represent the main source to estimate the BV of candidates under selection. With this aim, 

sophisticated statistical methods mainly based on best linear unbiased prediction (BLUP) mixed 

linear model methodology have been implemented (Henderson, 1984). These methods 

capitalize on information contained in the recorded phenotypes of not only the individual itself 

but also of its relatives, in order to maximize the accuracy of the resulting estimated breeding 

value (EBV). 

 

I - 1.2. From quantitative to molecular genetics 

Although selection programs based on traditional BV estimated from phenotype have been very 

successful, they also face a number of limitations. These primarily relate to (1) the ability to 

routinely record phenotypes on selection candidates and/or their close relatives in a timely 

manner, such that accurate selection decisions can be made at an early age reducing ultimately 

the generation intervals. (2) The cost of phenotype recording and (3) the nature of phenotype 

itself. In fact, many traits of interest are only recorded late in life (e.g. longevity) or only on one 

sex (e.g. milk yield), require animals to be sacrificed (e.g. meat quality) or require animals to 

be exposed to conditions that would hamper the ability to market or export their germplasm 

(e.g. disease resistance).  

In the 1970’s the advent of molecular biology provided new opportunities to enhance 

quantitative genetics and breeding programs in livestock. Particularly, nucleic acid-based 

markers has had a great impact on gene mapping, allowing identification of the underlying 

genes that control part of the variability of traits. For this reason, with the rapid development of 

DNA marker genotyping technologies, animal breeding has moved from conventional breeding 

to molecular breeding and has leaded to marker-assisted selection (MAS) (Dekkers, 2004), i.e. 

selection on a combination of information derived from the traditional phenotypic information 

and genetic markers. 
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MAS refers to the use of DNA markers that are tightly linked to target loci (associated with 

quantitative traits loci - QTL) as a substitute for or to assist phenotypic screening. In other 

words, an individual may be identified based on its genotype rather than its phenotype. This 

may greatly increase the efficiency and accelerate the breeding programs. For example, time 

and labour savings may arise from the substitution of difficult or time-consuming on-farm trials 

(that are conducted in particular standardized condition or are technically complicated) with 

DNA marker tests. Furthermore, selection based on DNA markers may be more reliable due to 

the influence of environmental factors on farm tests.  

Thanks to increasing of DNA marker genotyping devices, a large numbers of candidate gene 

and QTL mapping studies were conducted (Andersson, 2001; Dekkers and Hospital, 2002). 

This resulted in the discovery of substantial numbers of QTL, marker-phenotype associations, 

causative mutations or genomic regions that affect quantitative traits (Grisart et al., 2002; 

Dekkers, 2004) providing opportunities to enhance response to selection, in particular for traits 

that are difficult to improve by conventional selection.  

In general, although molecular genetic information is used in industry programs and is growing, 

the extent of use has not lived up to initial expectations. The implementation of molecular 

information in breeding programs, was limited for various reasons, particularly because most 

QTL studies were conducted in experimental crosses to create extensive linkage disequilibrium, 

rather than in the populations that are used for genetic improvement (Dekkers, 2004). For more 

details on linkage disequilibrium see chapter 2 paragraph 1.4 (‘The use of genetic information 

to enhance the response to selection’). Furthermore, the use of molecular information requires 

a comprehensive integrated strategy that must be closely aligned with business on which the 

cost of routine genotyping of selection candidates still affects (Dekkers, 2004).  

In this regard, new opportunities are offered by the development of high-throughput (HT) 

commercial platforms for genotyping, which have marked the beginning of ‘omic’ analyses.  

This new scenario allows exploring the genome looking for QTLs and associations between 

molecular markers and phenotypes with high resolution, providing information to estimate 

genomic breeding value (GEBV), and allowed ultimately the implementation of genomic or 

whole-genome selection (GS) that can be considered as a MAS on a genome-wide scale 

(Meuwissen, 2007). For more details see paragraph 3 (‘Omic’ technologies in animal breeding 

and genetics’) and chapter 2 (‘Genome-wide association study of milk fatty acid composition in 

Italian Simmental and Italian Holstein cows using SNP arrays’). 
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I - 2. Omics sciences 

I - 2.1. Genesis 

In 1977, Sanger and colleagues published the dideoxynucleotide method for DNA sequencing 

(Sanger et al., 1977). This method revolutionized the biology and culminated in 2001 in a 

milestone for human history: the completion of the human genome sequence. The Human 

Genome Sequence Project (HGSP) was the result of an extensive international effort and cost 

about 2.7$ billion for over 13 years of intensive work (https://www.genome.gov/27565109/the-

cost-of-sequencing-a-human-genome). Although ‘Sanger sequencing’ resulted in many 

technical improvements in throughput, accuracy, safety, robustness and sensitivity over the 

HGSP years, it remained a high-cost and time-consuming method. Sequencing a complex 

genome with Sanger technology is estimated to cost about €25 million for several years of work 

(https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome). For this 

reason, between 2005 and 2007, driven by growing demands of research in human genetics, 

agriculture and environmental sciences, Roche, Illumina (ex Solexa) and Applied Biosystems 

developed innovative sequencing technologies, known as next-generation sequencing (NGS).  

Staple of NGS technologies is their ability to sequence massive amounts of templates in 

parallel, producing millions of reads in one run and with a relative low cost: the era of the 

Sanger monopoly on sequencing was over. Along with the benefits of cost-effective DNA 

sequencing with a revolutionary depth, scale and throughput (the whole genome sequence is 

now available for most species), the new DNA sequence information encouraged the 

development of powerful molecular biology tools for genome-wide analysis. Those tools, 

known as high-throughput (HT) devices, provided further impulse to novel applications in 

analysis of (1) genome-wide genetic variation and (2) gene expression by transcriptomic 

profiling. This new scenario motivated the researchers to change their research perspective and 

address biological questions on a genome-wide scale. They progressively shifted from a 

traditional candidate gene approach to a more new and holist approach that considers thousands 

of genes together or even whole genome. Ultimately the massive capacity of HT technologies 

has led to a paradigm shift from gene by gene analyses to ‘omic’ analyses covering the whole 

genome, exome or transcriptome (Goldman and Domschke, 2014). The ‘omic era’ has 

definitely begun. 
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I - 2.2. The paradigm shift 

The addition of ‘omic’ to a molecular term implies a comprehensive, or global, detection of a 

set of molecules which contain part of the information related to the biological system under 

study (Hasin et al., 2017 Vailati-Riboni et al., 2017): genes (genomics), RNA (transcriptomics), 

proteins (proteomics), and metabolites (metabolomics). The trademark characteristic of omics 

sciences is their holistic capability. The staple is that a complex system can be understood more 

thoroughly if considered as a whole (Vailati-Riboni et al., 2017). In this sense, the omics 

approach has twin advantages: (1) is applicable to well-known scenarios to study the deep 

connections and interrelationships among the many faces of a complex physiological state and 

to discover missing pieces in the current knowledge (Vailati-Riboni et al., 2017). (2) Is suitable 

for hypothesis-free experiments, i.e. situations when no hypothesis is known or prescribed due 

to lack of data. In this case, the holistic approach, based on acquisition and analysis of all 

available data, helps to define a preliminary hypothesis, which can be further tested (Vailati-

Riboni et al., 2017). 

In this regard, it must be emphasized that investigating biological phenomena at the ‘omics 

scale’ come with the need for implementing a novel modus operandi. The challenge is to 

address data generation, analysis and sharing from a ‘larger perspective’. In fact, it is worth 

noting that the revolutionary gain of omic data relies on being analysed and interpreted as a 

whole through effective and integrative pipelines (integrated (multi)omics approaches). This 

clearly requires the cooperation of multidisciplinary teams as well as the fundamental support 

of bioinformatics and biostatistics (Manzoni et al., 2018), which have a key and prominent role 

in omic research (Yadav, 2015). This new scenario lead to the birth of the ‘Systems Biology’ 

which is an inter-disciplinary study based on ‘omic’ technologies and is concerned with 

understanding the dynamic outcome of molecular interactions among biomolecules at pathway, 

cellular network, cell, tissue and organismal levels (Berry et al., 2011). Instead of analysing 

individual components or aspects of the organism, such as the response of a single cell type to 

a specific disease, systems biologists focus on all the components and the interactions among 

them, all as part of one system (Berry et al., 2011). While genomics, transcriptomics and 

proteomics, coupled with bioinformatics, are gaining momentum, they are still, for the most 

part, assessed individually with distinct approaches generating monothematic rather than 

integrated knowledge (Manzoni et al., 2018).  
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I - 2.3. Genomics 

The first omics discipline to appear was ‘genomics’, which is the study organisms’ whole 

genome. Nowadays, high quality reference genome sequences are available for model species 

and economically important agricultural animals; a revolution built on the shoulders of the 

HGSP that has provided an invaluable resource for genomic studies in several fields (Dekkers, 

2012; Van Emon, 2016). In particular, the completion of many species genome provided a very 

useful framework for mapping and studying specific genetic variants contributing to phenotypic 

variation of complex traits of interest (Manzoni et al., 2018). In this regard, many genetic 

variants exist in genomes and can be broadly categorized into two groups: simple nucleotide 

variations (SNVs) and structural variations (SVs). The former comprises single nucleotide 

variations and small insertion/deletions (indels) (known as single nucleotide polymorphism - 

SNP); the latter includes large indels, copy number variants (CNVs) and inversions (Metzker, 

2010).  

Several techniques to capture genetic variants are available and include (1) ‘Sanger 

sequencing’, the base-by-base sequencing of a locus of interest. (2) ‘DNA-microarrays’, based 

on hybridization of the DNA sample with a set of pre-defined oligonucleotide probes distributed 

across the entire genome or enriched around regions of interest. (3) ‘Next-generation 

sequencing’ (NGS) methods based on the fragmentation of the genomic DNA into pieces that 

are subsequently sequenced and aligned to a reference sequence (Manzoni et al., 2018). In this 

context, genome-wide association studies (GWAS) represent the gold standard method to 

exploit the biological information associated with DNA variants. Broadly, GWAS analyse 

DNA variants focusing on their inheritance and ultimately identify candidate loci associated 

with quantitative traits (QTL) in a hypothesis-free discovery study.  

More specifically, a typical GWAS design involves using a SNP-based microarray to genotype 

a cohort of interest. GWAS arrays are probe-based chips with a large number of SNP markers 

spread across the genome (encompassing 10,000 up to 2,000,000 SNPs), having the capability 

to perform high-throughput genotyping for large scale samples (Fan et al., 2010). Such coverage 

ensures that any QTL will be closely linked with at least one marker. The expected result is a 

list of significant SNPs, evaluated for their linkage disequilibrium, i.e. the correlation structure 

that exists among DNA variants in a genome, in relation to the trait under study using the most 

appropriate statistical model in a given population. For more details see chapter 2 (‘Genome-

wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein 

cows using SNP arrays’). The ultimate goal is to link genotypic variations to corresponding 
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differences in phenotype and ultimately to identify locations in the genome (i.e. genes) that 

harbour variability with possible influence on traits of interest (Visscher et al., 2017). It is 

widely reported in literature that significant SNPs in GWAS mostly fall inside intronic or 

intergenic regions (Manolio et al., 2009), i.e. the association typically identifies variants 

supposed to affect DNA structure and gene expression rather than protein sequence. For this 

reason, it is clear that balancing the statistical evidence of SNP-based genotype/phenotype 

correlation with prior evidence of biological relevance is the challenging problem (Saccone et 

al., 2008). This means that the statistically significant associations require prioritization with 

follow-up studies. In this regard, many methods are available for the prioritizing GWAS results 

and for handling the GWAS statistical challenges (Cantor et al., 2010; Sobota et al., 2015). 

Among others, some methods have recently been proposed using a priori knowledge, as the 

‘candidate pathway’ analysis (Raven et al., 2013), and the ‘gene-based’ association strategies 

(Cantor et al., 2010; Liu et al., 2010; Akula et al., 2011). For more details see chapter 4 and 2 

(‘PIA (Pathways Interaction Analysis): an R tool for analysing and interpreting high-

throughput data’ and ‘Genome-wide association study of milk fatty acid composition in Italian 

Simmental and Italian Holstein cows using SNP arrays’). 

 

I - 2.4. Transcriptomics 

The science of the genomes, or ‘genomics’, initially dedicated to the determination of DNA 

sequences and its significant variants has promptly expanded toward a more functional level: 

study of the expression profiles, i.e. ‘transcriptome’. The transcriptome is the total RNA (i.e., 

mRNA, noncoding RNA, rRNA, and tRNA) expressed by a cell or tissue, and represents a 

snapshot of cellular metabolism (Vailati-Riboni et al., 2017). In particular, the study of 

messenger RNA (mRNA) dynamics in a given sample, facilitates a global understanding of the 

molecular changes in gene activation/suppression levels (gene expression differences) that 

controls the synthesis of proteins within the cell, which ultimately affect function and phenotype 

of an individual (Berry et al., 2011).  

The first transcriptomic studies were started along with the development of the ‘microarray’ 

technology in the late ‘90s (Schena et al., 1995). The recent introduction of high-throughput 

next-generation DNA sequencing (NGS) technology has revolutionized transcriptomics by 

allowing RNA analysis through cDNA sequencing on a massive scale (Voelkerding et al., 
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2009). RNASeq has now displaced microarrays as the preferred method for gene expression 

profiling (Kukurba and Montgomery, 2015; Costa-Silva et al., 2017). 

The most popular technology for RNASeq has been the Illumina Genome Analyzer and Hi-Seq 

(http://www.illumina.com). Since its introduction in 2007, sequencing technology has steadily 

increased read length and overall number of reads generated per run, enabling higher levels of 

mappability (McGettigan, 2013). The latest and innovative devices also enable better 

identification and mapping of spliced reads as well as enabling the assembly of transcriptomes 

in the absence of a reference genome using de novo assembly approaches (McGettigan, 2013). 

The principal goal of RNASeq analysis is to identify key differentially expressed genes (DEGs) 

involved in specific physiological conditions (Costa-Silva et al., 2017). To detect differential 

expression, a variety of statistical methods have been designed specifically for RNASeq data. 

Nowadays, well-structured bioinformatics ready to use tools are freely available (Anders and 

Huber, 2010; Hardcastle and Kelly, 2010; Robinson et al., 2010; Wang et al., 2010; Trapnell et 

al., 2013). For more details see chapter 3 (‘Transcriptional profiling of swine mammary gland 

during the transition from colostrogenesis to lactogenesis using RNA sequencing’). 

Gene expression studies can also be used for the detection or validation of potential QTL (Berry 

et al., 2011). Simplistically, a GWA study suggests potential biological processes associated 

with a trait to be subsequently investigated in functional work (Pearson and Manolio, 2008; 

Edwards et al., 2013). A more sophisticated approach is seen in the ‘genetical-genomics’ study 

(Jansen and Nap, 2001). ‘Genetical genomics’ is a term coined by Jansen and Nap (2001) to 

describe the marrying of genetic mapping methodology with gene expression data by 

combining a genome-wide study of gene expression with a genome wide scan of loci controlling 

variation in gene expression (Berry et al., 2011). This approach can be used to dissect gene 

expression differences among individuals into genetic and non-genetic components using 

populations and methods similar to those used for QTL mapping in GWAS, but instead of actual 

phenotypes, the dependent variable is the expression levels of multiple transcripts (Berry et al., 

2011). The ultimate goal is to identify significant loci explaining a fraction of the genetic 

variance of a gene expression phenotype, i.e. expression QTLs (eQTLS) (Nica and Dermitzakis, 

2013). One current limitation of genetical-genomics approaches for QTL detection is the cost 

of undertaking genome wide expression profiles on a large number of individuals to gain 

sufficient statistical power. However, this limitation will diminish as the cost of expression 

profiling reduces. 
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I - 2.5. Bioinformatics 

The science of bioinformatics has developed in the wake of methods to determine the sequences 

of the informational macromolecules (mainly DNA and RNA). With the advent of whole 

genome sequencing and the related HT platforms that offer genome-wide information, 

bioinformatics has grown into the scientific field of management and analysis of biological 

information (Eisenberg et al., 2006). Bioinformaticians use computers and statistics to perform 

‘omic-research’ in order to gain useful information from such comprehensive sets of data 

(Schneider and Orchard, 2011). In fact, it is obvious that without robust computational methods 

it is impossible to make sense of the huge data produced. This is so true that now, 

bioinformatics-based applications have been tightly incorporated in all omics research. 

Bioinformatics analyses include a huge number of applications continuously developed and 

updated, with the goal of (1) data processing and molecule identification, (2) statistical data 

analysis, (3) pathway analysis, and (4) data modelling in a system wide context (Schneider and 

Orchard, 2011).  

Among the others ‘pathway analysis’ deserve particular mention which represents the first 

choice to simplify the analysis of omic data, extracting meaning from the list of key outcomes 

and providing insights into the underlying biology of the state being studied (Khatri et al., 

2012). In fact, to reduce the complexity of data mining challenges, one common approach is to 

simplify the analysis by grouping long lists of individual genes into smaller sets of related genes 

sharing the same biological processes and/or molecular functions (i.e. pathways). This method 

of analysing high-throughput data has become popular during the last few years and it is known 

as ‘functional enrichment’ or ‘pathway analysis’ (Curtis et al., 2005) This approach is driven 

by increasing availability of public pathway knowledge based on hierarchical classification of 

terms (i.e. gene ontology - GO). The GO contains standardized annotation of gene products and 

has become the de facto standard for the secondary analysis of high throughput experiments 

(Khatri and Drăghici, 2005). Many sources of pathway and functional information, which can 

be either generic or species-specific, are now available and, at the same time, a large number 

of tools for pathway analysis have been developed, based on increasing availability of gene 

annotations databases (Berg et al., 2009a). For more details see chapter 4 (‘PIA (Pathways 

Interaction Analysis): an R tool for analysing and interpreting high-throughput data). 

The rise of a high number of bioinformatics tools has fostered initiatives aimed at generating 

web portals to list them and support their effective use. For example, EMBL-EBI has a 

bioinformatics service portal listing a variety of databases and tools tailored for specific quests 
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or topics (McWilliam et al., 2013); OMICtools is a library of software, databases and platforms 

for big-data processing and analysis (Henry et al., 2014); ExPASy is a library particularly 

renowned for proteomics tools (Gasteiger et al., 2003). In this context, it is worth noting that 

R-environment programming is gaining immense importance. R is an open-source 

programming language created in 1995 (Ihaka and Gentleman, 1996a) and is the de facto 

standard for the development of tools and ad hoc scripts useful for a variety of analyses and 

bioinformatics solutions, often shared on free repositories such as CRAN (https://www.R-

project.org/), Bioconductor (http://www.bioconductor.org/) and GitHUB (https://github.com/). 

The flourishing of all of those analytic tools and software is remarkable, and increases the speed 

at which data can be processed and analysed. However, with this abundance of possibilities, 

caution is warranted, as no single tool is comprehensive and none is infallible. It is imperative 

to understand the principles behind bioinformatics tools and to choose the most suitable ones 

for the purposes of the end user’s projects (Manzoni et al., 2018). 

 

I - 3. ‘Omic’ technologies in animal breeding and genetics 

To date most applications of ‘omic’ technologies in animal breeding have been through 

genomics (Berry et al., 2011). Several genotyping solutions on a wide-scale are currently 

available for most livestock species at a reasonable cost. Those platforms allow the analysis of 

an individual for tens of thousands of SNP across the genome in one single analysis. The first 

such high-density SNP genotyping platform available in livestock was the 50K Bovine Illumina 

SNP panel (Matukumalli et al., 2009). Similar SNP panels are now available for other livestock 

species, including pigs, poultry, sheep and horse. Recently, panels with over 700K SNP have 

become available in cattle and such higher density panels are also under development in other 

species. 

Particularly in dairy cattle, the main use of high-density SNP genotyping has been to implement 

genomic or whole-genome selection (GS). In 2001, Meuwissen et al. (2001) proposed the GS, 

in which an estimated genomic breeding value (GEBV) was used to select a suitable breeding 

strategy. GEBV considers the effect of each SNP on the high-density (HD) array using models 

that fit all SNP simultaneously (Dekkers, 2012), i.e. potentially capturing all the quantitative 

trait loci (QTL) that contribute to the variation in a phenotype (Hayes et al., 2009). At the same 

time, HD SNP genotypes can be useful to construct so-called genomic relationship matrix 

among individuals, as an alternative to traditional pedigree-based relationship matrix for BLUP 
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model used to estimate BVs in livestock (Clark and van der Werf, 2013). Estimation of BV 

using HD SNP data has been implemented in dairy cattle breeding programs in several 

countries. Research is also underway with the goal of implementing genomic selection in other 

livestock species (Dekkers, 2010). It is estimated that by using GS strategy, the rates of genetic 

improvement in sheep and dairy cows could be increased by 20–100% (Yang et al., 2017) and 

that the generation interval can be reduced to 1.5 years compared to current 5-6 years in dairy 

cattle (Pryce and Daetwyler, 2012). This because GS strategy allows selection of young 

candidates for breeding prior to the availability of extensive progeny data (Dekkers, 2012). 

Thanks to increasing of availability of HD genotyping solutions, nowadays, MAS and GS have 

become mainstream practices in molecular breeding of livestock (Yang et al., 2017), 

nevertheless the near future is represented by the use of next generation sequencing (NGS) for 

animal genotyping. This may open up new avenues to explore relationships between genetic 

and phenotypic diversity with high resolution. In fact, NGS data analysis provides a clear 

advantage over HD arrays, as it is not bound by the extent of linkage disequilibrium between 

SNP markers and the causal mutation but the causal mutation is in the data itself (Sharma et al., 

2017). Although NGS technologies open a promising and interesting perspective and their use 

in animal breeding is an active field of research, its advantages and drawbacks are yet to be 

seen in practical situations before becoming a standard practice in livestock breeding (Sharma 

et al., 2017). Overall, genomic prediction of production in crossbreeding and across-breed 

schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully 

rely on genomic information for selection decisions (Jonas and Koning, 2015). Nevertheless, 

what is certain is that omics sciences, built on possibilities offered by HT and NGS 

technologies, represent the near future of animal breeding and genetics; the best method to 

illuminate the biological mechanisms of complex economic traits and to accurately predict their 

phenotypic variations (Yang et al., 2017). It is expected that population-personalized multi-

omics livestock breeding will be realized in the future (Yang et al., 2017) and this will allow 

breeders to achieve rapid, accurate, and selective breeding of livestock according to their 

breeding objectives. 

 

I - 4. Aim of the thesis 

The general aim of this thesis is to explore the biology of livestock complex traits, such as lipid 

metabolism and colostrogenesis/lactogenesis transition respectively in bovine and pig species. 
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In particular, the specific objectives are to (1) investigate the differences of genetic basis related 

to the milk fatty acids profiles in two Italian dairy cattle breeds and (2) delineate the genes and 

transcription regulators implicated in the control of the transition from colostrogenesis to 

lactogenesis in swine, using the state-of-art genomic and transcriptomic analyses.  

For these reasons, a GWAS analysis is run to investigate milk fatty acid profile traits in Italian 

Holstein and Italian Simmental breeds. Data are analysed with a well-established method 

implemented in the GenABEL R package and with the MUGBAS gene-based association 

method. Association is investigated between 120K SNPs and 85 fatty acids (as single, 

aggregated or index values). In addition, an RNASeq analysis is performed to investigate the 

mechanism of transition from colostrogenesis to lactogenesis in swine. For this reason, the 

mammary tissue is collected from three sows in five different time points close to parturition. 

Once the transcriptome profile is sequenced, gene set enrichment and gene network analyses 

are performed to uncover the most-impacted pathways and to identify the transcription 

regulators involved. 

Along with objectives and related studies introduced above, an in-house bioinformatics tool 

performing an original pathway analysis is presented. The tool, entirely built in R and named 

PIA (Pathways Interaction Analysis), is designed for post-genomic and transcriptomic data 

mining. In particular, PIA helps to infer possible functional candidates among a list of 

significant genes, extending the concept of classical pathway analysis and taking into account 

the investigation of relations among multiple pathways. 
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Chapter II - GENOME-WIDE ASSOCIATION STUDY OF MILK FATTY ACID 

COMPOSITION IN ITALIAN SIMMENTAL AND ITALIAN HOLSTEIN COWS 

USING SNP ARRAYS 

 

Abstract 

Milk bovine is important for human nutrition but is often criticized due to its fat levels potential 

association with cardiovascular diseases. With regard to this risk, a selective breeding program 

could affect milk fatty acids (FA) composition, in order to improve the healthiness of human 

diets. In this thesis, a genome-wide association study (GWAS) on bovine milk was performed 

with the aim to identify genomic regions or genes associated with FA profile and investigate 

genetic differences between the Italian Simmental (IS) and Italian Holstein (IH) breeds. For this 

reason, milk from 416 IS and 436 IH cows were sampled and fat profile characterized by gas-

chromatography. Subjects were genotyped with high and medium density SNP array and single-

marker regression model to facilitate a genome-wide association study was performed.  

The findings confirmed that several previously reported quantitative trait loci (QTL) are 

strongly associated with bovine milk fat composition. In particular, the GWAS resulted in 95 

significant SNP associations with milk FA, with the strongest signals on BTA19 and BTA26. 

Further gene-centric approach and pathway meta-analysis identified significant candidate 

genes, and some well-known genes underlying QTL for milk FA components, such as FASN, 

SCD and DGAT1, but also other possible interesting genes, some of which had a functional role 

into pathways in interaction with ‘Lipid Metabolism’. The findings provide insights into the 

patterns of genes related to FA profile including ECI2, PCYT2, DCXR, G6PC3, PYCR1 and 

ALG12 in IS and CYP17A1, ACO2, PI4K2A, GOT1, GPT, NT5C2, PDE6G, POLR3H and 

COX15 in IH. Overall, the breed-specific association outcomes reflected the differences of 

genetic background of Italian Simmental and Italian Holstein breeds and their selective 

breeding history.  
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Contents of chapter  

II - 1. Introduction 

II - 1.1. Bovine milk fatty acids 

Milk is a fluid secreted by the mammary glands of female mammals and provides a primary 

source of nutrition for the neonate. Raw milk contains fat, protein, lactose, vitamins, minerals 

and water. In addition to a natural source of nutrition for infant mammals, milk and dairy 

products are major components of the human diet in many parts of the world. In this regard, 

bovine milk plays a prominent role, being by far the principal type of milk used throughout the 

world and having long traditions in human nutrition (Fox, 2003). Among its components, fat is 

the main source of energy and influences the taste of milk and dairy products (Fenelon and 

Guinee, 1999; Esposito et al., 2014; Martini et al., 2016). About 98% of the total fat in milk is 

present in the form of triacylglycerols (Jensen, 2002), which are a single molecules of glycerol 

combined with three fatty acids (FA). In addition to the triacylglycerols, milk contains small 

amounts of diacylglycerols, monoacylglycerols, free (unesterified) FA and phospholipids. In 

this regard, bovine milk-fat is considered as one of the most complex fats with about 400 FA 

identified, although only few are abundant (Jensen, 2002). FA are named and categorized 

according to their length (i.e. number of carbon atoms) and to their degree of saturation (i.e. 

number of double bonds). Generically, FA without double bonds are called saturated (SFA), 

with one double bond are called monounsaturated (MUFA), and with two or more double bonds 

are called polyunsaturated (PUFA). Each single FA has a different structure and proprieties. 

The impact of dietary fat on human diseases has been investigated for decades (Hu and Willett, 

2002). In this regard, milk fat is often criticized due to high percentage of its SFA content, 

claimed to increase blood cholesterol, heart disease, weight gain and obesity (Shingfield et al., 

2013; Tullo et al., 2014; Pulina et al., 2017). Conversely, MUFA are considered to have a 

favourable effect on human health, because of their cholesterol-declining properties 

(Schwingshackl and Hoffmann, 2012). PUFA, especially the n-6 and n-3 series, are considered 

beneficial to human health and influence plasma lipids serving cardiac and endothelial functions 

for the prevention and the treatment of coronary heart diseases (FAO, 2010; Li et al., 2014a; 

Zhang et al., 2016). Furthermore, special attention is paid to Conjugated Linoleic Acids (CLA, 

long chain fatty acids) due to their supposed role on the modulation of plasma lipid 

concentration, also having anticarcinogenic and anti-inflammatory activity as shown in vitro 

and animal model studies (Parodi, 1999; Haug et al., 2007).  
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In dairy cows, typical milk fat content is about 70% SFA, 25% MUFA, and 5% PUFA, which 

considerably differs from the ideal fatty acid profile for human health (8% SFA, 82% MUFA 

and 10% PUFA) (Bilal et al., 2014). In order to improve the healthiness of human diets and to 

satisfy the consumer’s demands, one of the animal breeding objectives is acting on milk FA 

profile, so that it is expected that a premium price for milk quality would include in the near 

future also the lipid specific composition (Tullo et al., 2014).  

 

II - 1.2. Factors influencing bovine milk fat  

The composition of milk fat is affected mainly by feeding factors (type, quantity and quality of 

forage) (Palmquist et al., 1993; Jensen, 2002; Palmquist, 2006a) nevertheless other sources of 

variability are well-known (Syrstad et al., 1982; German and Dillard, 2006; Stoop et al., 2009a). 

It is also documented that a significant part of the variability in FA composition is determined 

genetically (Soyeurt et al., 2007; Stoop et al., 2008). This has opened the possibility to optimize 

bovine milk-fat composition through selective breeding and not only by nutritional strategies. 

This possibility would represent a more permanent and reliable solution than other livestock 

production systems changes, offering a more consistent result to consumers (Mele et al., 2007; 

Schennink et al., 2009b; Bilal et al., 2014).  

In general, the major prerequisite for selective breeding is the existence of genetic variation. In 

this regard, phenotypic variation in milk-fat composition has been documented over the years, 

both between and within breeds (Stull and Brown, 1964; Syrstad et al., 1982) and more recently 

many authors discussed cow’s breed effect and genetic variability on milk composition (Soyeurt 

et al., 2006; Arnould and Soyeurt, 2009; Adamska et al., 2016). Estimating heritability values 

on FA traits is not an easy task, with studies often varying and discordant results (Soyeurt et 

al., 2007; Petrini et al., 2016). However, generally it is possible to conclude that the estimates 

reflect the common origin of groups of FA. In fact, the FA in milk arise from two sources: de 

novo synthesis in the mammary gland and plasma lipids. Short- and medium-chain (C4 to C16) 

SFA and MUFA are largely synthesized de novo in the mammary gland and show a moderate 

to high heritability. Whereas long-chain FA (C18 or more carbon atoms) are derived from 

circulating plasma lipids, which originate from diet and from body fat metabolism, and 

obviously show low to moderate heritability (Schennink et al., 2009b; Stoop et al., 2009b; 

Buitenhuis et al., 2014).  
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II - 1.3. Genes involved in bovine milk-fat composition 

There are several genes known to be involved in FA synthesis and that explain part of the 

genetic variation of milk fat (Pegolo et al., 2016). In particular, causative variants in 

diacylglycerol O-acyltransferase-1 (DGAT1) and stearoyl-CoA desaturase-1 (SCD) genes have 

been documented in numerous studies (Grisart et al., 2002b; Moioli et al., 2007; Schennink et 

al., 2007, 2008). Specifically, a quantitative trait locus (QTL) mapping study in cattle (Grisart 

et al., 2002b) identified a polymorphism into the gene coding for DGAT1 (K232A) with a 

strong effect on milk-fat percentage and other milk-production characteristics. In SCD1, a non-

synonymous SNP in exon 5 (A293V), has been associated with milk fatty acid composition in 

Italian Holstein, Piedmontese and Valdostana cattle breeds (Mele et al., 2007; Moioli et al., 

2007). More recently, because of its known role in fat synthesis, fatty acid synthase (FASN) 

gene has been extensively studied as a candidate gene for fat content in milk (Schennink et al., 

2009a; Bouwman et al., 2012). In particular it was the focus of studies designed to identify 

SNPs linked with the causative mutations for differences in milk FA composition (Li et al., 

2016; Knutsen et al., 2018). Several SNPs in FASN resulted in association with milk FA traits, 

one of them was predicted to result in an amino acid substitution from threonine (ACC) to 

alanine (GCC) (Li et al., 2016). Although the large effect of these major genes on milk fat in 

dairy cattle is well-established, other genes are expected to explain fat composition variability 

because of the complexity of biological mechanism of FA synthesis. 

 

II - 1.4. The use of genetic information to enhance the response to selection 

Most of the traits with an economic interest in livestock have a complex quantitative expression 

affected by environmental factors and simultaneously coded by a large number of genes. 

Starting from this paradigm, the estimation of genetic merit (breeding value) of animal 

candidate for selection has been historically based on Fischer’s infinitesimal model, according 

to which an infinite number of loci, each with an infinitesimal additive effect, affects observed 

phenotypes (Fisher, 1919). Traditionally, best linear unbiased predictors (BLUP) methodology 

has been used to estimate a breeding value for all the animals in the population starting from 

all sources of phenotypes and pedigree information. This approach has dominated quantitative 

genetics over the years and allowed us to reach high rates of genetic improvement in many 

livestock species. More recently, due to the application of advanced techniques in molecular 
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genetics, limited chromosomal regions influencing quantitative traits have been discovered 

(Lander and Botstein, 1989). This has suggested that the control of quantitative traits 

(quantitative trait loci – QTL) expression is under a more limited number of loci, i.e. few genes 

with large effect and many of small effect. Hayes and Goddard (Hayes and Goddard, 2001) 

enforced this hypothesis studying the distribution of QTLs effect in dairy cattle and swine. 

Starting from this novel evidence, several approaches have been indicated to integrate 

molecular information in current breeding programs using genetic markers (Dekkers, 2004). 

Three types of genetic markers useful to this purpose have been defined: (1) direct, (2) linkage 

disequilibrium (LD) and (3) linkage equilibrium (LE) markers (Dekkers, 2004). The direct 

markers code for a functional causative mutation, whereas the LD and LE markers are loci in 

population-wide LD or LE with the functional mutation, respectively. The classical definition 

of LD refers to the non-random association of alleles between two loci. If two (A and B) bi-

allelic markers are considered, four haplotypes of markers are possible (A1_B1, A1_B2, A2_B1 

and A2_B2). If the frequencies of alleles A1, A2, B1 and B2 in the population are all 0.5, then 

the frequencies of each of the four haplotypes in the population are expected to be 0.25. Any 

deviation of the haplotype frequencies from 0.25 is LD, i.e. the genes are not in random 

association. Several measures of LD are available (Lewontin, 1964; Hill and Robertson, 1968; 

Hill, 1981; Zhao et al., 2005), nevertheless statistic r2 (Hill and Robertson, 1968) is preferred 

over the others as a measure of the extent of LD for bi-allelic markers: 

𝑟2 =  
𝐷2

𝑓𝑟𝑒𝑞(𝐴1) × 𝑓𝑟𝑒𝑞(𝐴2) × 𝑓𝑟𝑒𝑞(𝐵1) × 𝑓𝑟𝑒𝑞(𝐵2)
 

where D is calculated as described by Hill (Hill, 1981). 

In current breeding programs, the use of markers (particularly in LD with QTL) has opened the 

possibility to develop the so-called ‘marker assisted selection’ (MAS). MAS represents an 

opportunity to enhance the response to selection especially for low-heritability traits, or those 

whose phenotype is difficult and expensive to measure or is expressed later in age. Overall, 

MAS could help to increase the accuracy of breeding values estimated for young animals and 

reduce the generation interval, nevertheless its use has not yet deliver its expected benefits in 

commercial breeding programmes. In fact, although advances in molecular genetics have been 

able to explain part of the genetic variances due to QTL, the use of MAS have been limited by 

several reasons. Firstly, only a restricted number of causative gene mutations have been 
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identified. Secondly, it is obvious that marker effect needs to be re-estimated frequently, 

because of recombination affecting on decreasing of LD across generations. This limitation is 

particularly important when low-density marker maps are used, as frequently happened in the 

past. In this case, the QTL is mapped within very large confidence intervals and there is risk 

the selection is only on the marker and not directly on the QTL or gene. 

 

II - 1.5. Genome wide association studies (GWAS) 

Nowadays, the availability of high-throughput sequencing techniques allows us to discover 

thousands of single nucleotide polymorphism (SNP) spread across the whole genome in several 

livestock species. Currently, arrays for genotyping animals at about 1,000,000 marker loci are 

commercially available. These new techniques give rise to new opportunities for genetic 

evaluation of farm animals with a so called genome-wide approach (Meuwissen et al., 2001). 

This new advance firstly allows us to explore the genome looking for QTLs and associations 

between SNP and phenotypes with high resolution and ultimately provides information to 

estimate genomic breeding value (GEBV). In the former case we talk about genome-wide 

association studies (GWAS), while in the latter we refer to genomic selection (GS) that can be 

considered as a MAS on a genome-wide scale (Meuwissen, 2007). Currently, GWAS represents 

the most promising method for dissecting the biology that underlies complex traits (McCarthy 

et al., 2008). The rationale of GWAS is simple: find marker-trait associations exploiting the LD 

that exists between the causative mutation or QTL (which is ignored) and a very large number 

of markers spread across all the genome (whom positions are known). In this way, it is possible 

to pinpoint genomic regions carrying causal variants for any trait, with a high probability as 

well as high resolution. The association between markers and QTL arise because there are small 

segments of chromosome in the population descending from the same common ancestor. These 

chromosome segments, which trace back to the same common ancestor without intervening 

recombination, will carry identical marker alleles or marker haplotypes. If there is a QTL 

somewhere within the chromosome segment, they will also carry identical QTL alleles. Several 

statistical methodologies, which exploit these associations, are available (Gondro et al., 2013); 

single marker regression GWAS is the simplest. In fact, in a random mating population with no 

population structure, the association can be tested as: 

y Wb Xg e 
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Where y is a vector of phenotypes, W is a design matrix assigning phenotype records to fixed 

effects, b is a vector of fixed effects, X is a design matrix allocating records to the marker effect, 

g is the effect of the marker and e is a vector of random deviates eij ~ N (0, σe
2), where σe

2 is the 

error variance (Gondro et al., 2013). In this model the effect of the marker is treated as a fixed 

effect, and the model is additive, such that two copies of the second allele has twice as much 

effect as one copy, and no copies has zero effect. The underlying assumption here is that the 

marker will only affect the trait if it is in LD with an unobserved QTL. The null hypothesis is 

that the marker has no effect on the trait, while the alternative hypothesis is that the marker does 

affect the trait (because it is in LD with a QTL). The null hypothesis is rejected if >  𝐹𝛼,𝜈1,𝜈2 , 

where F is the F statistic calculated from the data and 𝐹𝛼,𝜈1,𝜈2 is the value from an F distribution 

at α level of significance and ν1, ν2 degrees of freedom. 

The F-value can be calculated as (Gondro et al., 2013): 

𝐹 =  
(𝑛 − 1)(𝑔̂𝑋′𝑦 −

1
𝑛𝑦′𝑦)

𝑦′𝑦 − 𝑔̂𝑋′𝑦 −   𝑢̂1𝑛′𝑦
 

F-values can be transformed into p-values for comparison with significance thresholds. One 

common option is to adjust the significance level for the number of markers tested using a 

Bonferroni correction to obtain an experiment wise P-value of 0.05 (Gondro et al., 2013). 

 

II - 1.6. Overcome the limitation of GWAS 

Although nowadays GWAS is the principal tool used to reconnect the trait back to its 

underlying genetics, it presents some limitations connected with its nature: particularly multiple 

comparison problems and result portability. On one hand, in fact GWAS research testing for 

hundreds of thousands or even millions of SNPs simultaneously, have to pay a high statistical 

price. Typically, Bonferroni test is applied for GWAS multiple comparisons (Gondro et al., 

2013) but it is often too conservative, so that many important loci may not pass the stringent 

criterion of the significance test, as well as its use in some cases is not considered completely 

appropriate (Chen and Liu, 2011). On the other hand the result portability across a population 

is limited by a variety of confounding factor, such as population structure, differential LD 

levels, breed specific selection targets and SNPs ascertainment bias (Clark et al., 2005). In this 



 

 
Chapter II - GENOME-WIDE ASSOCIATION STUDY OF MILK FATTY ACID COMPOSITION IN ITALIAN 

SIMMENTAL AND ITALIAN HOLSTEIN COWS USING SNP ARRAYS 

 
 34 

 

context also the nature of SNP information itself could represent a limitation: e.g. one 

favourable allele may segregate in one breed and be fixated in another, the same allele 

segregates in both breeds but alleles may differ or the genetic background masks the effect of 

segregation (Capomaccio et al., 2015a). To improve results usability and low signal catching, 

various strategies can be applied. One could be using haplotypes instead of single markers, to 

better pinpoint the associated regions (Utsunomiya et al., 2017). Another option is the dissection 

of associated signals with post-GWAS analyses (Capomaccio et al., 2015b; Pegolo et al., 2018). 

With regards to this option, gene-based association strategies, that restrict GWA study only to 

genes and neighboring genomic regions (Liu et al., 2010; Capomaccio et al., 2015b; a), or 

pathway enrichment and network analysis for the prioritization of GWAS outcomes (Akula et 

al., 2011; Yoon et al., 2018) deserve particular mention. In this context, an interesting 

contribution may be represented by ‘PIA: an R package for Pathways Interaction Analysis’ (see 

Chapter 4). 

 

II - 1.7. Italian Simmental and Italian Holstein dairy breeds 

The investigation of genetic differences in phenotypically diverse breeds is a recognized 

strategy to reveal genes and related pathways that underlie complex traits of interest (D’Andrea 

et al., 2011), including milk FA profiles (Buitenhuis et al., 2014). In this regard, Italian 

Simmental (IS) and Italian Holstein (IH) represent two breeds with different productive 

characteristics and divergent selective breeding history, as well as genetic backgrounds (Bomba 

et al., 2015; Marras et al., 2015). IS is a dual-purpose cattle type, well adaptable to extensive 

system such as in mountainous areas (www.anapri.it). IH is a dairy cow intensively selected for 

high yielding in intensive production systems (www.anafi.it). Little information is available in 

literature on the comparison between these two breeds in terms of milk FA composition, 

however, significant differences in milk FA content between the Polish Simmental and Polish 

Holstein Frisian were previously reported (Adamska et al., 2016). The identification of common 

genes involved in the control of the trait investigated between the two breeds is not an easy task 

due to breed-specific selection target, as mentioned before, that can lead to differences at the 

genomic level (Bomba et al., 2015; Marras et al., 2015). Moreover, alleles segregating in one 

breed may be fixed in the other or, even when the same alleles are segregating in both breeds, 

the genetic background may change their effects (Capomaccio et al., 2015a). At the same time, 
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it is known that multibreed GWAS helps QTL detection only if the same QTL are shared across 

breeds (van den Berg et al., 2016). For example, Raven and colleagues found decrease in power 

when Holstein and Jersey data were combined, compared with within-breed GWAS results 

(Raven et al., 2014).  

II - 2. Aim of the study 

Several GWAS on cattle production and morphological traits have been conducted and genomic 

regions associated to these traits have been found, but only a limited number found genes 

directly involved in milk FA biology and very few focused on Italian dairy breed populations 

(Capomaccio et al., 2015a; Macciotta et al., 2015). In this study a GWAS on bovine milk was 

performed with the aim to identify genomic regions or genes associated with FA profile and 

investigate genetic differences between IS and IH breeds. For this reason, milk from 416 IS and 

436 IH cows were sampled and fat profile characterized. Subjects were genotyped with 150K 

SNP array and a single-marker regression model for GWAS was performed. In addition to the 

classical GWAS approach, with the aim to increase discovery power in both breeds, post-

GWAS analyses were applied. First a gene-based approach, MUGBAS (MUlti species Gene-

Based Association Suite) (Capomaccio et al., 2015b), and after the Pathways Interaction 

Analysis (PIA) (see chapter 4) were performed. The former used the single-SNP GWAS results 

to calculate a gene-wise p-value. Briefly, the gene-wise test statistic condenses p-values of a 

SNP subset (within gene boundaries) weighting local LD (Capomaccio et al., 2015b; a). As 

reported by Capomaccio and colleagues, the gene-centric approach improves the power of the 

analyses rescuing signal under the genome-wide threshold in single-SNP GWAS. The latter 

uses the list of significant genes obtained with MUGBAS and investigates their relations taking 

into account upstream and downstream pathways in interactions with those related to the trait 

of interest (i.e. ‘Lipid Metabolism pathways’). In this case, the gene is evaluated for its 

functionality in the pathways involved with the traits. This before mentioned pipeline was here 

applied on IS and IH lactating cows, to find new QTL and genes affecting breed-specific FA 

composition and to further elucidate the genetic differences or similarities between the two 

breeds. 
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II - 3. Materials and methods 

II - 3.1. Experimental population 

In this study 416 IS and 436 IH cows from 10 commercial farms were considered. Animals 

were selected from commercial dairy farms located in the North East part of the Po Valley 

(Italy) presenting homogeneous management and ration compositions. Farms were selected 

together with the local Farm and Breeder Association (Associazione Allevatori del Friuli 

Venezia Giulia, Codroipo, Italy; www.aafvg.it), which provided information of individual milk 

records, reproductive parameters and managerial aspects. The herd size ranged from 157 to 654 

cows. The inclusion criteria considered for the cows was to be clinically healthy and 

preferentially in mid-lactation. The average days in milk (DIM) were 153 (± 70) and 167 (± 63) 

for IS and IH, respectively. All the lactating cows were housed in free stalls with cubicles and 

milking parlours and the management of the farms were similar. Cows had free access to water 

and an ad libitum total mixed ration (TMR), based on corn silage and formulated to cover 

nutrient requirements, was offered twice a day, after the morning and the afternoon milking. 

The day of official milk recording of the Breeder Association, 100 ml of milk samples were 

collected in the parlour from each cow at the morning milking. An aliquot of 50 ml of milk was 

transferred into a tube containing preservative and was used for protein, fat, lactose analyses 

and for somatic cell count (SCC) determination. The other aliquot of milk was transferred to a 

tube without preservative, frozen within 2 hours and stored at -20°C for FA analyses. Peripheral 

blood samples were collected and stored at -20°C before DNA isolation. Animals were also 

classified for parity, DIM, milk yield, fat and protein percentage content; for both breeds data 

were provided by the National Breeder Associations (A.N.A.P.R.I. for IS and A.N.A.F.I. for 

IH). 

 

II - 3.2. Fatty acid analysis 

Milk fat was extracted according to Buccioni et al. (2010) and methyl esters of fatty acids 

(FAME) were prepared with a base-catalyzed transesterification according to Christie (1982). 

The FAME were separated and identified by gas-chromatography (Buccioni et al., 2015). 

The desaturation index (DI) was calculated according to the following formulas: 

DI = (cis-9 10:1) / (10:0 + cis-9 10:1) 
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DI = (cis-9 14:1) / (14:0 + cis-9 14:1) 

DI = (cis-9 16:1) / (16:0 + cis-9 16:1) 

DI = (cis-9 18:1) / (18:0 + cis-9 18:1) 

DI = (cis-9,trans-11 18:2) / (trans-11 18:1 + cis-9,trans-11 18:2) 

All results were expressed in grams per 100 grams of fatty acid (FA). 

 

II - 3.3. Statistical analysis of phenotypes 

FA traits were compared between the breeds with Welch Two Sample t-test R function to 

estimate significant differences (R Development Core Team, 2006). Variance components were 

calculated within breeds separately adopting a linear mixed model performed with MIXED 

procedure in SPSS software (IBM Corp. Released 2013. IBM SPSS Statistics for Windows, 

Version 22.0. Armonk, NY: IBM Corp.) using the following model:  

Yijk= μ + yield
i
 + FKg

i
+ PKg

i
+ Log(SCC

i
) + DIMi+ parity

𝑗
 + farmk +  εijk 

where Yijk is the phenotype; μ is the overall mean; yield is the covariate effect of milk yield; 

FKg and PKg are the covariate effect of fat and protein content respectively; SCC is the 

covariate effect of somatic cell count; DIM is the covariate describing the effect of days in milk; 

parity is the fixed effect of calving, before statistical analysis animals were classified for parity 

with ordinal value of 1 for first calving, 2 for second calving and 3 for cows with more than 2 

calving; farm is the random effect of farm distributed as N(0, Iσ2
farm), with identity matrix I and 

farm variance σ2
farm; and ε is the random residual distributed as N(0, Iσ2

ε), with identity matrix 

I and farm variance σ2
ε.  

For each trait, the heritability was calculated by ASreml software (Gilmour, A.R. et al., 2009), 

using the same data and model described before. All phenotypic distributions were 

systematically diagnosed for normality using a Shapiro–Wilk test and non-normal phenotypes 

were adjusted by truncation of outliers (+/- 3 times SD and first five values +/- Q1Q3) or by 

log transformation.  
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II - 3.4. Genotyping and quality control 

Genomic DNA was isolated from whole blood using the GenElute Mammalian Genomic DNA 

Miniprep Kit (Sigma-Aldrich, California, USA). After extraction, quality and quantity of 

nucleic acid were assessed by electrophoresis and spectrophotometry. The DNA was stored at 

-20°C. Fifty ng of genomic DNA were sent to the genotyping facility (GeneSeek, Lincoln, NE) 

for marker analysis. A total of 152 IS subjects were genotyped with BovineHD Genotyping 

BeadChip (BovineHD, 777,000 SNP) (Illumina, San Diego, CA); the rest of IS subjects were 

genotyped with GeneSeek GGP Bovine 150K array from Neogene (Bovine150K, 150,000 

SNP). All IH subjects were genotyped with GeneSeek GGP Bovine 150K array from Neogene 

(Bovine150K,). Before the imputation phase, genotypes were quality controlled excluding 

markers with more than 10% of missing data, minor allele frequency (MAF) less than 1% and 

with duplicate physical position. Subjects with more than 10% of missing data were also 

removed. Therefore the IS subjects genotyped with BovineHD chip were de-imputed to the 

lower density with BEAGLE software v4.0 (Browning and Browning, 2007, 2016) to uniform 

the SNPchip density among the breeds. Briefly, the common markers between Bovine150K 

chip and BovineHD chip were first extracted, and then the non-common ones were imputed. 

For IH only missing genotypes imputation and phasing were performed. Allelic r2 estimated by 

BEAGLE was used to evaluate the imputation accuracy. Markers with r2 lower than 0.75 were 

excluded. After imputation the genotypes were quality checked. SNP with MAF lower than 5% 

or Hardy Weinberg Equilibrium (HWE) P-value lower than 10-6 were excluded. Subjects with 

lower or higher observed heterozygosity (ObsHet) (average ± 4SD; 0.3352 ≥ ObsHet ≥ 0.4494) 

or not pure (i.e. more than 20% of other breed genetic component evaluated, using K2 from 

Admixture software v1.3 (Alexander et al., 2009) were excluded.  

The final datasets consisted in 118,135 SNPs in 416 IS animals and 121,165 SNPs in 436 IH 

animals.  

 

II - 3.5. Genome-wide association analysis 

Genome-wide association analysis was carried out based on regression of phenotypes on the 

genotypes of animals for one SNP at a time. For this purpose a Genome-wide Rapid Analysis 
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using Mixed Model and Score test has been carried out (GRAMMAS) (Aulchenko et al., 2007a) 

in R package GenABEL (Aulchenko et al., 2007b) as described by the following general 

formula: 

Y = μ + Xb + Sa + Zu + ε 

where Y is the vector of trait values (milk fatty acids – FA), μ is the overall mean, b is the vector 

of fixed effects (milk yield, fat and protein content, log(SCC), parity, DIM and farm effect), a 

is the fixed effect of the SNP genotype, u and ε are vectors of random additive polygenic effects 

and random residuals respectively, u ~ N(0, Aσ2
a) and ε ~ N(0, Iσ2

ε), where A is the additive 

genetic relationship matrix estimated from SNPs data using “ibs” function in GenABEL 

(Aulchenko et al., 2007b), while I is an identity matrix, σ2
a and σ2

ε are the additive genetic and 

residual error variance, respectively. X, S and Z are the related incidence matrices. The 

associations were deemed as being significant considering a Bonferroni-corrected genome-

wide significant thresholds at 0.05 (equivalent to 4.23245×10-7 in IS population and 

4.12660×10-7 in IH population). Furthermore, a GWAS analysis was performed for milk fat 

percentage content (FP) trait using the same model, but considering only parity, DIM and farm 

as fixed effects. 

 

II - 3.6. Gene-based association analysis 

As already discussed before, one of GWAS limitations is the stringent significance threshold 

often applied to correct for multiple testing. For this reason, a large proportion of genes with 

small effects are disregarded, with consequent overestimation of the effect of major genes 

(Capomaccio et al., 2015a). To overcome this limitation, the post-GWAS MUGBAS procedure 

was used to pinpoint candidate genes starting from single-SNP GWAS results (Capomaccio et 

al., 2015b). Briefly, MUGBAS takes into account the SNP significance results and a specific 

gene annotation information (Bos taurus reference genome assembly UMDv3.1), once defined 

gene boundaries MUGBAS condenses the p-values of a SNP subset weighting local LD and 

estimates a gene-based association p-value. In this analysis the gene boundaries were artificially 

increased in both sides (100 Kbp) in order to capture regulatory signals. For each gene, a ‘gene-
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wise’ p-value and False Discovery Rate (FDR) q-value were calculated. The associations with 

the FDR q-values less than or equal to 0.05 were considered as being significant.  

 

II - 3.7. Pathways interaction analysis 

To infer the most probable candidate among the list of significant genes uncovered by 

MUGBAS, a Pathways Interaction Analysis (PIA) was performed (see chapter 4). Briefly, PIA 

is an in-house R-package based on gene relation investigations, taking into account upstream 

and downstream pathway interactions. For this purpose, the significant gene list is ordered into 

respective KEGG metabolic pathways (Kanehisa and Goto, 2000). Once pathways strongly 

related with the trait of interest are chosen (first degree interaction - FDI), an interaction 

network is automatically created selecting the relative up/downstream pathways (from 2 - 

second degree interaction, SDI - to n degree of interactions) based on information available on 

KEGG databases (Kanehisa and Goto, 2000). Ultimately, genes falling inside the pathways in 

interaction are considered good candidates for the trait of interest having both positional and 

functional evidences at their sight. In the present study, after KEGG ‘Lipid Metabolism’ 

pathways were selected as FDI, PIA analysis was built until the third degrees of interactions 

considering the complexity of gene networks driving bovine milk fat synthesis (Bionaz and 

Loor, 2008a). 

 

II - 4. Results and discussion 

A GWA approach was used to identify QTL affecting milk fatty acids composition in Italian IS 

and IH cows and to assess the genetic differences and similarities between those two breeds. In 

this regard, this is the first GWA study on FA composition in IS, since other similar studies 

were focused only on milk production and related quality traits (Capomaccio et al., 2015a) or 

lactation curve (Macciotta et al., 2015).  

 

II - 4.1. Phenotype and genotype statistics 

The two populations displayed normal, or near-normal, distribution for all fatty acids. A 

summary of FA profile measures and significant differences between the two populations is 
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reported in the Table II-1. The predominant FA were C16:0, C18:1c9, C14:0 and C18:0 in both 

breeds.  

Although it is not possible to state which milk is healthier or better without knowing the final 

destination of consumption, the comparison between the two breeds supports the consideration 

that FA profile differs significantly. Interesting differences (P < 0.05) among breeds were 

observed in almost all FA considered (73 out of 83) with a particularly high statistical 

significance level (P<0.0001) for 65 traits (Table II-1). In this regard, no information is 

available in literature comparing milk fatty acids profiles between IS and IH breeds. In a more 

general perspective, milk fat comparison has a wide range of availability in literature for 

Holstein, Brown Swiss and Jersey cows, under different feeding regimen (DePeters et al., 1995; 

Kelsey et al., 2003; Moore et al., 2005; Carroll et al., 2006; Palladino et al., 2010; Nantapo et 

al., 2014). Whereas, to the best of our knowledge, less information is available about milk fat 

in Simmental cows. In this regard, Pilarczyk and colleagues (Pilarczyk et al., 2015), comparing 

the milk fat content of Simmental and Holstein-Friesian cows under the same feeding regimen 

(organic farming), reported that the concentration of PUFA n-6, was higher in Simmental cows, 

whereas there is no difference among the content of SFA and MUFA. A recent comparison of 

milk FA composition in Polish Simmental and Holstein is also available (Adamska et al., 2016). 

The authors reported higher contents of short chain SFA in Polish Simmental milk fat in 

comparison with Polish Holstein. In this study SFA milk concentration was higher (+2.5%) in 

the IS than IH, whereas MUFA concentration was lower (-6%). In particular, among SFA, short 

and medium chain FA were significantly higher in IS milk, whereas C18:0 content was higher 

in IH milk fat. Furthermore, the amounts of long chain FA were higher in IH. Considering the 

PUFA content, the n-6 FA were higher (+10%) in IS milk fat, whereas PUFA n-3 were higher 

(+20%) in IH. 

Differences between the two breeds were also confirmed in terms of heritability (h2) of the traits 

of interest, particularly regarding the estimated values for short-SFA (i.e. C6:0, C8:0, C10:0, 

C14:0). A moderate heritability was also found for C16:1 c9, C18:0, for DI 10-1/(10+10-1) and 

DI 14-1/(14+14-1), and for DI Rum/(vac+rum) only in IS. A summary of all heritability values 

is reported in Table II-2. Generally, estimated heritability results confirmed the good 

partitioning of observed variation into unobserved genetic and environmental factors. In 

particular, the estimated values indicated that genetic components contribute particularly to 
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SFA metabolic traits, as expected (Mele et al., 2007; Schennink et al., 2009b; Bilal et al., 2014). 

Considering single FA heritability values, our results were higher compared to those reported 

by other authors (Mele et al., 2009). In this regard, it must be taken into account that heritability 

estimation is always specific for the investigated population and, generally, is influenced by 

samples size and sampling purpose (in this case designed for GWAS analysis). 

 

II - 4.2. Single-population GWAS results 

After the single-marker genome-wide association study on 83 FA traits, 5 and 90 significant 

SNP were identified (i.e. over Bonferroni threshold) in IS and IH, respectively (Table II-3).  

More specifically, few significant associations in IS were detected on BTA19 and BTA26 for 

C14:0; C14:1c9; DI 10-1/(10+10-1) and DI 14-1/(14+14-1) traits (Figures II-1, -2, -3 and -4), 

whereas, several signals were detected on IH BTA26 for C14:1c9, DI 10-1/(10+10-1) and DI 

14-1/(14+14-1) traits (Figures II-5, -6 and -7). Overall, the 98% of significant SNPs were 

located in noncoding regions. In particular, except for intron variants (~58%), most of 

significant SNPs that predicted consequences were located at 5' of a gene (~29%). This result 

is not surprising because it is known by literature that most signals from GWAS map to the 

non-coding genome (Edwards et al., 2013; Zhu et al., 2017). Although functional interpretation 

of these associations remained challenging, it is possible to speculate as this indicates a complex 

regulatory mechanism for fatty acid metabolism.  

The low number of SNP associated with IS FA profile trait is not surprising (Capomaccio et 

al., 2015a). Generally, complex traits such as fatty acids profile (Bionaz and Loor, 2008a; 

Buitenhuis et al., 2014) are affected by a few major genes with large effects and many others 

with moderate to low effects. The latter are not easily identified by genome-wide scans in 

modern cattle breeds due mainly to sample size limitation. In addition, the signals from the 

major genes are lost due to the fixation of favourable alleles (Capomaccio et al., 2015a). 

Differences between the two breeds, in terms of GWA results, are consistent with the 

consideration that IS has a different genetic background compared to IH (Bomba et al., 2015; 

Marras et al., 2015). The significant signals on BTA19 (~51.3 Mb) and BTA26 (~22.0 Mb) are 

likely related to the effect of FASN (chr 19, AC_000176.1, 51384892-51403614) and SCD (chr 

26, AC_000183.1, 21137945-21148317) genes, involved in the fatty acid synthesis and 

unsaturated fatty acid biosynthetic process respectively. At the same time, it is interesting to 
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note that no signals were detected on BTA14, where DGAT1 is located. The importance of the 

DGAT1 gene in lactation has been widely described (Grisart et al., 2002b). This is consistent 

with the fact that considering the milk fat percentage content (FP) significant associations were 

found on IH BTA14 (~15.3 Mb, ~18.2 Mb, ~29.5 Mb, ~41.4 Mb) (Figure II-8, Table II-4). This 

association is clearly due to DGAT1 effect (chr 14, AC_000171.1, 1795425-1804838).  

In this regard, the absence of DGAT1 signal in IS breed is in line with previous studies where 

DGAT1 p.232K allele was identified with a very low frequency in IS (Scotti et al., 2010), a 

condition that does not allow the association with milk fat percentage trait in IS (Capomaccio 

et al., 2015a).  

 

II - 4.3. Gene-based association analysis results 

As already explained before, MUGBAS gene-centric approach was performed (Capomaccio et 

al., 2015b) with the aim to overcome the stringent significance GWA threshold and amplify the 

single-marker association signals. A summary of all significant genes and the relative best SNP 

is reported in Supplementary Table II-S1. MUGBAS identified a list of 47 and 165 significant 

positional candidate genes, respectively associated to milk FA in IS and IH, showing a different 

pattern of genes in association with traits of interest (Supplemantary Table II-S2).  

In this regard, SCD gene, responsible of all the conversions of saturated to mono-unsaturated 

fatty acids from C10:0 to C18:0, was found to be significantly associated with C14:1c9, DI 10-

1/(10+10-1) and DI 14-1/(14+14-1) traits in both breeds, and with C10:1c9, C16:1c9, DI 16-

1/(16+16-1) specifically in IS. These results are in line with other authors’ outcomes (Mele et 

al., 2007; Moioli et al., 2007; Schennink et al., 2008; Conte et al., 2010; Bouwman et al., 2011; 

Buitenhuis et al., 2014). Whereas, DGAT1 gene, pivotal in mammary gland triacylglycerol 

synthesis and known to underlie a large genetic variation in milk-fat production and 

composition of dairy cows (Grisart et al., 2002b), was associated only in IH with the C15:0, 

C16:0 and C16:1c9 traits, as expected (Scotti et al., 2010; Capomaccio et al., 2015a) and 

explained before. Our result in IH breed were consistent with outcomes obtained by Buitenhuis 

and colleagues (Buitenhuis et al., 2014) study on Danish Holstein and Danish Jersey breeds, 

reporting as DGAT1 was associated to C16:0 and C16:1 but not with the desaturation indexes. 

Regarding this, it is woth noting that significant association between DGAT1 and desaturation 
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indexes were reported in other studies on Italian Brown and Dutch Holstein breeds (Schennink 

et al., 2008; Conte et al., 2010). Moreover, it is worth nothing that the ARS-BFGL-NGS-4939, 

our best candidate SNP associated with the DGAT1 effect in C15:0 (FA19) trait (Supplementary 

Table II-S2), was already shown to be in complete linkage disequilibrium (LD) with the 

DGAT1 p.232K polymorphism in German Holstein-Friesian (Wang et al., 2012b) and 

associated with milk fat percentage in IH (Capomaccio et al., 2015a). This SNP had a low 

frequency (0.063) in our IS population, confirming the previous findings (Scotti et al., 2010; 

Capomaccio et al., 2015a).  

Another interesting and unexpected result was the association of FASN, encoding the enzyme 

responsible of de novo FA synthesis, only in IS with C10:0, C12:0 and C14:0 traits. FASN was 

reported in other studies as a candidate gene for milk fat percentage and fat composition 

(Schennink et al., 2009a; Bouwman et al., 2012). In particular, Schennink and colleagues 

(Schennink et al., 2009a) found a FASN association with C14:0 in Holstein Friesian. This may 

suggest that FASN variants might be of minor importance (i.e. small allelic effects) in the 

overall milk fat composition in IH, compared with other genes, or simply that the FASN effect 

might be masked by the major SCD and DGAT1 mutation effects in our analysis. Regarding 

this, the BovineHD1900014372, our best SNP associated with the FASN effect in C10:0 and 

C12:0 traits (Supplementary Table II-S2), was already found to be significantly associated with 

FA in other breeds (Bouwman et al., 2012). This SNP had similar frequencies in both breeds 

(0.397 in IS and 0.375 in IH). Further analyses are required to investigate the FASN variants 

effects on bovine milk fat composition in IS and IH population but the fact remains that FASN 

is a candidate gene for milk production traits (Schennink et al., 2009a; Bouwman et al., 2012).  

Other interesting candidate genes highlighted by MUGBAS but not by PIA were coiled-coil 

domain containing 57 (CCDC57), sorbin and SH3 domain containing 1 (SORBS1), and 

conserved helixloop-helix ubiquitous kinase (CHUK). The CCDC57 on IS BTA19 was 

associated with the C12:0 and C14:0 traits. The CCDC57 gene is expressed in cow mammary 

gland (Medrano et al., 2010), and the coiled-coil domains refer to protein structural motifs. This 

result is in agreement with the significant association outcomes on C14:0 obtained by 

(Bouwman et al., 2014). The SORBS1 gene encodes an important protein in the insulin-

signaling pathway in the adipose depots of humans and has a positive regulatory effect on lipid 

biosynthesis (Baumann et al., 2000; Yang et al., 2003; Li et al., 2014a). In Chinese Holstein 
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cows, Li and colleagues. (Li et al., 2014) found 2 SNPs associated with C14:1 cis-9 and DI 14–

1/(14+14–1) located close to the SORBS1 gene. In our study SORBS1 gene was associated with 

the C14:1 cis-9, DI 10–1/(10+10–1), and DI 14–1/(14+14–1) traits in IH on BTA 26. On BTA 

26 the CHUK gene was associated with the DI 16–1/(16+16–1) trait in the IS population and 

with C14:1 cis-9 and DI 14–1/(14+14–1) in the IH population. Also, Li and colleagues (Li et 

al., 2014) found an association of this gene with the DI 14–1/(14+14–1) trait, but they 

considered their result to be an artifact due to the close proximity of CHUK to the SCD gene. 

The descriptions of the other significant genes discovered by MUGBAS but not revealed in PIA 

are reported in the ‘Other significant genes’ section. 

 

II - 4.4. Pathway analysis results 

To reduce false-positive signals and concentrate on finding meaningful results, a gene pathway 

analysis using an in-house method named Pathway Interaction Analysis (PIA) was performed 

(see chapter 4). This approach helped to confirm the functional role of significant genes 

obtained by MUGBAS. A summary of all genes obtained with PIA for the three degrees of 

interaction investigated in our analysis is reported in Table II-5. Among the MUGBAS 

significant genes and as a corollary of well-known principal lipogenic genes (discussed before), 

PIA highlighted another 8 and 10 possible candidate genes in IS and IH respectively, with 

functional roles in pathways related with ‘Lipid Metabolism’ in KEGG and/or in interaction 

with them (Figures II-9 and -10).  

The originality of this approach lies in the possibility to investigate many levels of interactions 

among the pathways related to the trait of interest, revealing connections difficult to identify at 

a glance. Overall, PIA results confirmed the presence of differences between the two breeds in 

terms of genes associated with milk FA profile (Supplementary Table II-S2).  

In this regard, at the first level of interaction, along with the expected effect of SCD, FASN and 

DGAT1 genes, the significant signals of ECI2, PCYT2, DCXR genes in IS and of CYP17A1 

gene in IH were detected. In more detail, on IS BTA23 ECI2 gene was associated with C7:0 

trait. This gene (enoyl-CoA delta isomerase 2) encodes for an auxiliary mitochondrial enzyme 

involved in unsaturated fatty acid oxidation (van Weeghel et al., 2012), i.e. in the degradation 

of FA during fatty acid β-oxidation, as showed by PIA. In particular, ECI2 is an enzyme that 
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converts a cis-double bond to a trans-double bond so that β-oxidation may continue. It is 

interesting to note the significant association of this gene only in IS, where a higher milk n-6 

FAs content was detected compared to IH. On IS BTA19, DCXR and PCYT2 genes, involved 

in ‘Arachidonic acid metabolism’ and ‘Glycerophospholipid metabolism’ pathways, were 

associated with C14:0 trait. In particular, DCXR is a well-conserved gene among species and 

encodes for dicarbonyl L-xylulose reductase, a member of the short chain 

dehydrogenase/reductase superfamily, which reduces the various α-dicarbonyl compound 

(DCs) involved in the formation of advanced glycation end-products (AGEs) (Nakagawa et al., 

2002). DCs are generated from sugars or lipid compounds in various biological systems by 

oxidative stress (Lee et al., 2013). Whereas, PCYT2 encodes the ethanolamine-phosphate 

cytidylyltransferase 2, involved in the synthesis of phosphatidylethanolamine from 

diacylglycerol. In human adipose tissue, PCYT2 expression is considered negatively correlated 

with fat mass percentage and body mass index (Sharma et al., 2013). In this regard, it is 

interesting to note that both genes are on BTA19, the same chromosome of FASN from which 

they are distant only ~63.1 Kb and ~122.8 Kb, respectively. This may support the hypothesis 

of possible false positive signals (Table 7). Nevertheless MUGBAS results showed that these 

two genes had two different best SNPs from FASN (i.e. ARS-BFGL-NGS-39983 and ARS-

BFGL-NGS-90673). The LD among the 3 SNPs is very low (i.e. the maximum r2 value is 0.09). 

This suggesting the possibility of a long haplotype associated with C14:0. On IH BTA26, 

CYP17A1 gene was found to be associated with DI 14-1/(14+14-1) trait. This gene is involved 

in ‘Steroid hormone biosynthesis’ and, expressed in bovine ovary theca, encodes a steroid lyase 

that catalyzes the final step of androgen biosynthesis (Vanselow and Fürbass, 2011). This 

association is intriguing considering the known effect of hormones to increase milk yield in 

lactating animals (Mohammed and Johnson, 1985; Kalashnikova et al., 2009). 

Focusing on the second degree of interaction (Table II-5), the significant and best candidate 

association of the G6PC3 gene with C18:1 t6-8 trait was detected on IS BTA19 (Supplementary 

Table II-S2). PIA showed the G6PC3 gene to be involved in ‘Glycolysis/Gluconeogenesis 

pathway’ and in ‘Starch and sucrose metabolism’ at the second and third level of interaction, 

respectively. This gene belongs to one of the gene families encoding the glucose-6-phosphatase 

enzyme, that catalyses the final step of gluconeogenesis with the hydrolysis of glucose-6-

phosphate, ubiquitously expressed in humans (Banka and Newman, 2013). With regards to the 

IH breed, at the second level of interaction, the significant association of ACO2 (Aconitase 2) 



 

 
Chapter II - GENOME-WIDE ASSOCIATION STUDY OF MILK FATTY ACID COMPOSITION IN ITALIAN 

SIMMENTAL AND ITALIAN HOLSTEIN COWS USING SNP ARRAYS 

 
 47 

 

gene was detected on BTA5 with C15:0 and Odd-Chain Fatty Acids (OCFA) traits. We feel our 

results shows that ACO2 should be considered as a best candidate gene which encodes a nuclear 

protein acting in the mitochondrion and catalysing the interconversion of citrate to isocitrate 

via cis-aconitate in the second step of the tricarboxylic acid cycle. On IH BTA26, a significant 

association was also found between PI4K2A (Phosphatidylinositol 4-Kinase Type 2 Alpha) 

gene with C14:1c9, ID 10-1/(10+10-1) and ID 14-1/(14+14-1) traits. PI4K2A was investigated 

in humans and an autosomal recessive mutation was found causing hereditary spastic 

paraplegia, the initial studies were completed in a knockout mouse model showing this 

phenotype (Cleeter et al., 2011). Its product is one of the enzymes involved in vesicle formation 

in the trans-Golgi network (TGN) and endosomes in mammalian cells (Albanesi et al., 2015). 

At the third level of interaction, PIA showed PYCR1 and ALG12 genes in IS, whereas GOT1, 

GPT, NT5C2, PDE6G, POLR3H and COX15 genes in IH. PYCR1 was found to be associated 

with the C14:0 trait on IS BTA19. PIA found it to be involved in the ‘Arginine and proline 

metabolism pathways’. The PYCR1 (pyrroline-5-carboxylate reductase 1) gene synthetizes an 

enzyme involved in the proline metabolism and synthesis which are associated with the 

tricarboxylic acid cycle, urea cycle and the pentose phosphate pathway and, in several human 

studies, has been associated with tumor proliferation (Guernsey et al., 2009; Possemato et al., 

2011; Cai et al., 2018). ALG12 (asparagine-linked glycosylation 12 homolog), was showed by 

PIA to be involved in the ‘N-Glycan biosynthesis pathway’ and considered by MUGBAS to be 

a best positional candidate gene associated with the C18:1 t6-8 trait on IS BTA5. It has been 

demonstrated that the ALG12 promoter shows less transcriptional activity in response to 

endoplasmic reticulum stress, but its basic regulatory mechanism has not been characterized 

(Oh-Hashi et al., 2013). With regards to IH, PIA showed a cluster of genes involved in ‘Purine 

metabolism, ‘Pyrimidine metabolism’, ‘Alanine, aspartate and glutamate metabolism’: NT5C2, 

GPT, and COX15. In more detail, NT5C2 was found to be associated with the DI 14-1/(14+14-

1) trait and was considered by MUGBAS as a positional best candidate although on BTA26. 

NT5C2 (5'-Nucleotidase, Cytosolic II) gene encodes protein involved in cellular purine 

metabolism. NT5C is in a family of enzymes that inhibit basal lipid oxidation and glucose 

transport in skeletal muscle. Reduction of NT5C expression or activity may promote metabolic 

flexibility in type 2 diabetes (Kulkarni et al., 2011). On IS BTA14 GPT (glutamic-pyruvic 

transaminase), was found to be associated with the C16:0, C16:1c9 and BCFA+OCFA 

(Branched Chain Fatty Acids + Odd-Chain Fatty Acids) traits. Serum GPT level is one of the 
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most clinically important indicators of liver function in many studies testing different diets or 

supplements (Liao et al., 2013). Whereas, COX15 (Cytochrome c oxidase) was found to be 

associated with the C14:1c9, ID 10-1/(10+10-1) and ID 14-1/(14+14-1) traits on IS BTA26. 

COX15 (cytochrome c oxidase homologue) is the terminal component of the mitochondrial 

respiratory chain, catalyzes the electron transfer from reduced cytochrome c to oxygen and 

functional and genetic studies demonstrated that its deficiency causes cardiomyopathy 

(Antonicka et al., 2003; Fedida et al., 2017). With regards to the IH breed, a significant 

association of POLR3H with C15:0 and OCFA were found on IH BTA5, although it close in 

proximity to ACO2. POLR3H (Polymerase (RNA) III subunit H) is a gene involved with the 

immune response and its expression level has been studied on pigs, where the authors supposed 

its function on immunity may contribute to feed efficiency (Gondret et al., 2017) and likely 

energetic metabolism. The description of the other significant genes discovered by MUGBAS 

but not revealed by PIA is reported in the ‘Other significant genes’ section. 

 

II - 4.5. Other significant genes 

Numerous other genes were highlighted by MUGBAS, some of them appeared in both breeds 

and many others exclusively associated with a single breed’s fatty acid (FA) profile 

(Supplementary Table II-S2). Although these novel genes are not exclusively related to FA 

metabolism, they are still worthy of note. In fact, while often described in human diseases, these 

genes could potentially play a role in bovine fat physiology considering their possible 

pleiotropic effects or limited characterization. Clearly, further analyses are required to confirm 

the associations and roles of these genes in the bovine milk FA profile.  

On chromosome BTA26, GSTO (glutathione S-transferase omega) was associated with the DI 

10-1/(10+10-1) and DI 14-1/(14+14-1) traits in the IH breed. GSTO is a lipid metabolism-

related gene whose expression in the liver was correlated with the FA content of the diet in pigs 

(Świątkiewicz et al., 2016). On IS BTA7, SLC12A2 (solute carrier family 12 member 2) was 

associated with the C18:1c11 trait, which in chickens was found to be associated with 

abdominal fat (Zhang et al., 2012). On IS BTA14, UQCRB (ubiquinol-cytochrome C reductase 

binding protein) was associated with the C16:0 trait. UQCRB is a nuclear gene encoding the 

human ubiquinone-binding protein of Complex III (CIII), and its deficiency is associated with 

mitochondrial disease and one of the least common oxidative phosphorylation defects 
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(Fernández-Vizarra and Zeviani, 2015). CCDC57 (coiled-coil domain containing 57) on IS 

BTA19 was associated with the C12:0 and C14:0 traits. The CCDC57 gene is expressed in cow 

mammary gland (Medrano et al., 2010), and the coiled-coil domains refer to protein structural 

motifs. Our result is in agreement with the significant association outcomes on C14:0 obtained 

by Bouwman et al. (2014). The PKD2L1 (polycystin 2 like 1, transient receptor potential cation 

channel) gene on BTA26, considered as the best candidate, was associated with C10:1c9, 

C14:1c9, DI 10-1/(10+10-1), C16:1 c9, DI 14-1/(14+14-1), and DI 16-1/(16+16-1) in IS cows. 

The PKD2L1 gene was strongly associated with lysophosphatidylcholine (LPC) 16:1 

phospholipids (Demirkan et al., 2012). Another interesting gene on IS BTA26, CWF19L1 

(CWF19 like 1, cell cycle control), was found to be associated with the C16:1 c9, DI 14-

1/(14+14-1), and DI 16-1/(16+16-1) traits. In humans, this gene has been associated with 

nonalcoholic fatty liver disease (Kitamoto et al., 2014). The CHUK (conserved helix-loop-helix 

ubiquitous kinase) gene was associated with the DI 16-1/(16+16-1) trait in the IS population 

and with C14:1c9 and DI 14-1/(14+14-1) in the IH population. Also, Li et al. (2014) found an 

association of this gene with the DI 14-1/(14+14-1) trait, but they considered their result to be 

an artifact due to the close proximity of CHUK to the SCD gene. On BTA28, the GHITM 

(growth hormone inducible transmembrane protein) gene was associated with PUFA/SFA 

traits in IS. This gene encodes a polytopic membrane protein with 6 transmembrane domains; 

it is expressed in several cancer cell lines, but its physiological and probable pathological 

functions remain unknown (Reimers et al., 2007). 

In the IH breed on BTA3, ENSA (endosulfine alpha) was associated with C14-iso. This gene 

was associated with a pericardial fat trait in humans (Chu et al., 2017). On BTA14, the TONSL 

(tonsoku like DNA repair protein) gene was associated with the C15:0, C16:0, C16:1 c9, and 

BCFA+OCFA traits in IH cows. TONSL was also considered significant by other authors, 

despite its proximity to DAGT1 (Ibeagha-Awemu et al., 2016). 

On BTA14, variants of ARHGAP39 (rho GTPase activating protein 39), considered the best 

candidate, MFSD3 (major facilitator superfamily domain containing 3), and HSF1 (heat shock 

transcription factor 1), considered a possible false positive, were associated with the C16:0 and 

C16:1c9 traits, and MFSD3 was further associated with BCFA+OCFA. ARHGAP39 was found 

to be associated to C16:1 in Danish Holstein (Buitenhuis et al., 2014). HSF1 is one four HSFs 

(HSF1 to HSF4) reported in vertebrates. HSF1, which participates in the heat shock response, 
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protects cells from various attacks, including exposure to elevated temperatures, heavy metals, 

proteasome inhibition, and oxidative stress (Budzyński et al., 2015).  

On BTA26, several genes were found to be associated with the C14:1c9, DI 10-1/(10+10-1), 

and DI 14-1/(14+14-1) traits in IH (Table 1). For example, the SORBS1 (sorbin and SH3 

domain containing 1) gene encodes an important protein in the insulin-signaling pathway in the 

adipose depots in humans and has a positive regulatory effect on lipid biosynthesis (Baumann 

et al., 2000; Yang et al., 2003; Li et al., 2014a). In Chinese Holstein cows, Li et al. (2014) found 

two SNPs associated with C14:1c9 and DI 14-1/(14+14-1) located close to the SORBS1 gene. 

The CALHM1 and CALHM2 genes in our study were associated with the DI 14-1/(14+14-1) 

trait, whereas CALHM3 was associated with the C14:1c9 and DI 10-1/(10+10-1) traits in IH. 

The CALHM (calcium homeostasis modulator 1, 2 and 3) genes encode components of a brain 

calcium channel involved in cytosolic calcium homeostasis (Calero et al., 2012). The CALHM1 

protein also plays a role in processing amyloid-beta precursor proteins (Dreses-Werringloer et 

al., 2008). Coding-region variants of all three human CALMH genes have been associated with 

Creutzfeldt-Jakob disease (Calero et al., 2012). On IH BTA26, the ERLIN1, USMG5, BORCS7, 

and AS3MT genes were associated with the DI 14-1/(14+14-1) trait. AS3MT (arsenite 

methyltransferase) encodes a protein that catalyzes the transfer of a methyl group from S-

adenosyl-L-methionine (AdoMet) to trivalent arsenic (Lin et al., 2002). USMG5 (up-regulated 

during skeletal muscle growth 5 homolog) encodes a protein that is a small subunit of the 

mitochondrial ATP synthase and the lysosomal V-ATPase (Kontro et al., 2012). Also, Duarte 

et al. (Duarte et al., 2016) found the BORCS7, NT5C2 (already described above), and AS3MT 

genes to be associated with human schizophrenia. ERLIN1 (endoplasmic reticulum lipid raft 

associated 1) was associated with FA metabolism in the IH breed but not in IS. In a meta-

analysis conducted on nonalcoholic fatty liver disease, ERLIN1 was shown to cluster with the 

CHUK and CWF19L1 genes (mentioned above) (Feitosa et al., 2013) and was associated with 

early stages of fatty liver accumulation in hepatic inflammation. 

 

II - 5. Conclusion 

GWAS using a gene-centric approach and interaction pathways analysis allowed us to delineate 

a genomic region and novel genes associated with FA profile in IS and IH breeds. In particular, 

significant associations were detected on five chromosomes (BTA05, BTA14, BTA19, BTA23 
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and BTA26) for thirteen fatty acids (C7:0, C10:0, C10:1c9, C12:0, C14:0, C14:1c9, C15:0, 

C16:0, C16:1c9, C18:1 t6-8, C18:2 9-11 c/t, OCFA, BCFA + OCFA) and three desaturation 

indexes (ID 10-1/(10+10-1), ID 14-1/(14+14-1) and ID 16-1/(16+16-1)). According to previous 

results reported in literature, the effects of well-established genes associated with milk fat yield 

and content such as SCD, DGAT1 and FASN were confirmed, with some differences among the 

breeds. Furthermore, this study revealed other possible candidate genes, several of them directly 

or indirectly involved in ‘Lipid Metabolism’ which include ECI2, PCYT2, DCXR, G6PC3, 

PYCR1, ALG12, CYP17A1, ACO2, PI4K2A, GOT1, GPT, NT5C2, PDE6G, POLR3H and 

COX15. In summary, the findings improve our understanding of genetic architecture in IS and 

IH cows and highlight breed-specific genomic features, in terms of milk fatty acids profile. 
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II - 6. Figures and tables 

Figure II-1. Manhattan plots of GWAS results showing the significance of SNP associations 

for C14:0 fatty acid (FA) trait in the Italian Simmental (IS) breed. Negative log10 p-values of 

all SNPs that passed quality control are plotted against their genomic positions. Different 

chromosomes are distinguished with blue and red colors. The dashed line indicates the 

Bonferroni-corrected genome-wide significance threshold at p-value 0.05 

 

Figure II-2. Manhattan plots of GWAS results showing the significance of SNP associations 

for C14:1c9 fatty acid (FA) trait in the Italian Simmental (IS) breed. Negative log10 p-values of 

all SNPs that passed quality control are plotted against their genomic positions. Different 

chromosomes are distinguished with blue and red colors. The dashed line indicates the 

Bonferroni-corrected genome-wide significance threshold at p-value 0.05 
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Figure II-3. Manhattan plots of GWAS results showing the significance of SNP associations 

for ID 10-1/(10+10-1) fatty acid (FA) trait in the Italian Simmental (IS) breed. Negative log10 

p-values of all SNPs that passed quality control are plotted against their genomic positions. 

Different chromosomes are distinguished with blue and red colors. The dashed line indicates 

the Bonferroni-corrected genome-wide significance threshold at p-value 0.05 

 

Figure II-4. Manhattan plots of GWAS results showing the significance of SNP associations 

for ID 14-1/(14+14-1) fatty acid (FA) trait in the Italian Simmental (IS) breed. Negative log10 

p-values of all SNPs that passed quality control are plotted against their genomic positions. 

Different chromosomes are distinguished with blue and red colors. The dashed line indicates 

the Bonferroni-corrected genome-wide significance threshold at p-value 0.05 
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Figure II-5. Manhattan plots of GWAS results showing the significance of SNP associations 

for C14:1c9 fatty acid (FA) trait in the Italian Holstein (IH) breed. Negative log10 p-values of 

all SNPs that passed quality control are plotted against their genomic positions. Different 

chromosomes are distinguished with blue and red colors. The dashed line indicates the 

Bonferroni-corrected genome-wide significance threshold at p-value 0.05 

 

Figure II-6. Manhattan plots of GWAS results showing the significance of SNP associations 

for ID 10-1/(10+10-1) fatty acid (FA) trait in the Italian Holstein (IH) breed. Negative log10 p-

values of all SNPs that passed quality control are plotted against their genomic positions. 

Different chromosomes are distinguished with blue and red colors. The dashed line indicates 

the Bonferroni-corrected genome-wide significance threshold at p-value 0.05 
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Figure II-7. Manhattan plots of GWAS results showing the significance of SNP associations 

for ID 14-1/(14+14-1) fatty acid (FA) trait in the Italian Holstein (IH) breed. Negative log10 p-

values of all SNPs that passed quality control are plotted against their genomic positions. 

Different chromosomes are distinguished with blue and red colors. The dashed line indicates 

the Bonferroni-corrected genome-wide significance threshold at p-value 0.05 

 

Figure II-8. Manhattan plots of GWAS results showing the significance of SNP associations 

for milk fat percentage content (FP) in Italian Holstein (IH) breed. Negative log10 p-values of 

all SNPs that passed quality control are plotted against their genomic positions. Different 

chromosomes are distinguished with blue and red colors. The dashed line indicates the 

Bonferroni-corrected genome-wide significance threshold at p-value 0.05 
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Figure II-9. Diagram showing the results obtained with Pathway Interaction Analysis (PIA) on 

MUGBAS significant genes for the Italian Simmental (IS) breed. The pink circles represent 

functional candidate genes falling inside the pathways associated with the trait of interest or 

interacting with the pathway. The red squares represent first-degree (FDI) interaction pathways, 

directly connected to the trait of interest (i.e. ‘Lipid Metabolism’ in KEGG). The green and 

blue diamond symbols represent second- and third-level pathways, respectively, interacting 

with FDI pathways, as highlighted by the PIA. 
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Figure II-10. Diagram showing the results obtained with Pathway Interaction Analysis (PIA) 

on MUGBAS significant genes for the Italian Holstein (IH) breed. The pink circles represent 

functional candidate genes falling inside the pathways associated with the trait of interest or 

interacting with the pathway. The red squares represent the first-degree (FDI) interaction 

pathway, directly connected to the trait of interest (i.e. ‘Lipid Metabolism’ in KEGG). The 

green and blue diamond symbols represent the second- and third-level pathways, respectively, 

interacting with FDI pathways, as highlighted by the PIA. 
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Table II-1. Mean and standard deviation (SD) of individual fatty acids (FA), grouped fatty acids 

and desaturation index (DI) (g /100 g of FA) in milk of Italian Simmental (IS) and Italian 

Holstein (IH) breeds determined by gas-chromatography.  

  

 
IS IH  Signif.1 

FA FA code Mean SD Mean  SD p-value 

C4:0 FA01 2.804 0.351 2.812 0.523 ns 

C5:0 FA02 0.037 0.014 0.038 0.017 ns 

C6:0 FA03 1.867 0.205 1.760 0.254 *** 

C7:0 FA04 0.029 0.014 0.029 0.015 ns 

C8:0 FA05 1.116 0.138 0.985 0.143 *** 

C10:0 FA06 2.586 0.397 2.122 0.370 *** 

C10:1c9 FA07 0.206 0.043 0.187 0.043 *** 

C11:0 FA08 0.063 0.032 0.056 0.030 *** 

C12:0 FA09 2.944 0.494 2.377 0.430 *** 

C13-iso FA10 0.022 0.007 0.019 0.010 *** 

C13-anteiso FA11 0.056 0.016 0.048 0.016 *** 

C12:1c11 FA12 0.067 0.020 0.055 0.019 *** 

C13:0 FA13 0.115 0.040 0.104 0.038 *** 

C14-iso FA14 0.100 0.034 0.084 0.035 *** 

C14:0 FA15 12.132 1.323 10.722 1.060 *** 

C15-iso FA16 0.224 0.044 0.190 0.029 *** 

C15-anteiso FA17 0.458 0.074 0.386 0.059 *** 

C14:1c9 FA18 0.797 0.224 0.818 0.234 ns 

C15:0 FA19 1.197 0.278 1.108 0.260 *** 

C16-iso FA20 0.254 0.074 0.210 0.071 *** 

C16:0 FA21 32.320 3.868 31.436 3.046 *** 

C16-1t6-7 FA22 0.030 0.006 0.032 0.008 *** 

C16:1t9 FA23 0.043 0.013 0.044 0.012 ns 

C17-iso FA24 0.482 0.065 0.441 0.064 *** 

C16:1 c9 FA25 1.433 0.376 1.320 0.357 *** 

C17-anteiso FA26 0.434 0.075 0.373 0.056 *** 

C17:0 FA27 0.562 0.088 0.518 0.072 *** 

C17:1 c9 FA28 0.230 0.070 0.201 0.068 *** 

C18:0 FA29 8.678 2.003 10.876 1.906 *** 

C18:1 t4 FA30 0.017 0.005 0.025 0.009 *** 

C18:1 t5 FA31 0.017 0.026 0.023 0.031 ** 
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C18:1 t6-8 FA32 0.313 0.063 0.378 0.093 *** 

C18:1 t9 FA33 0.251 0.073 0.291 0.067 *** 

C18:1 t10 FA34 0.475 0.168 0.535 0.284 *** 

C18:1 t11 FA35 0.858 0.239 0.955 0.269 *** 

C18:1 t12 FA36 0.601 0.246 0.739 0.310 *** 

C18:1c9 FA37 20.145 3.000 21.469 2.597 *** 

C18:1 c11 FA38 0.821 0.179 0.985 0.180 *** 

C18:1 c12 FA39 0.465 0.177 0.555 0.183 *** 

C18:1t16 FA40 0.335 0.091 0.429 0.090 *** 

C18:2 t9.t12 FA41 0.250 0.064 0.240 0.048 ** 

C18:2 t11.c15 FA42 0.076 0.031 0.119 0.067 *** 

C18:2 c9.c12 FA43 2.531 0.555 2.278 0.458 *** 

C20:0 FA44 0.146 0.036 0.150 0.037 ns 

C18:3 c9.c12.c15 FA45 0.435 0.167 0.553 0.168 *** 

C18:2 9.11 c/t FA46 0.457 0.119 0.432 0.126 ** 

C18:4 c6.c9.c12.c15 FA47 0.019 0.007 0.020 0.010 * 

C20:2 c11.c14 FA48 0.020 0.008 0.018 0.008 ** 

C18-3 c9.t11.c15 FA49 0.016 0.009 0.019 0.011 *** 

C20:3 c8.c11.c14 FA50 0.128 0.039 0.122 0.029 * 

C20:4 c5.c8.c11.c14 FA51 0.177 0.032 0.152 0.036 *** 

C20:5 c5. c8. c11. c14. c17 FA52 0.038 0.010 0.045 0.015 *** 

C22:4 c7.c10.c13.c16 FA53 0.032 0.011 0.027 0.011 *** 

C22:5 c7.c10.c13.C16.c19 FA54 0.078 0.022 0.080 0.024 ns 

C22:6  c4.c7.c10.c13.16.c19 FA55 0.014 0.010 0.010 0.009 *** 

SFA FA56 68.510 3.809 66.740 3.507 *** 

UFA FA57 31.490 3.809 33.260 3.507 *** 

PUFA FA58 4.270 0.788 4.116 0.651 ** 

MUFA FA59 27.220 3.395 29.144 3.144 *** 

PUFA n6 FA60 2.887 0.589 2.596 0.482 *** 

PUFA n3 FA61 0.584 0.178 0.709 0.189 *** 

SCFA (C<10) FA62 8.645 0.903 7.933 1.083 *** 

MCFA (10<C<17) FA63 53.963 5.107 50.542 3.980 *** 

LCFA (C>17) FA64 37.393 5.440 41.526 4.302 *** 

BCFA FA65 1.546 0.243 1.311 0.199 *** 

BCFAiso FA66 1.081 0.174 0.944 0.153 *** 

BCFAanteiso FA67 0.465 0.126 0.367 0.086 *** 

OCFA FA68 3.842 0.558 3.445 0.439 *** 

trans 18-1 tot FA69 2.868 0.673 3.374 0.806 *** 
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trans totali FA70 3.191 0.691 3.690 0.837 *** 

UFA/SFA FA71 0.464 0.084 0.503 0.081 *** 

PUFA/SFA FA72 0.063 0.014 0.062 0.012 ns 

PUFA/(SFA-C18:0) FA73 0.073 0.018 0.074 0.015 ns 

n6/n3 FA74 5.126 0.931 3.898 1.089 *** 

DHA/EPA FA75 0.376 0.305 0.231 0.173 *** 

AA/DHA FA76 18.552 14.790 20.954 11.579 ** 

AA/(DHA+EPA+DPA) FA77 1.409 0.322 1.183 0.347 *** 

BCFA + OCFA FA78 5.388 0.719 4.756 0.529 *** 

BCFA/OCFA FA79 0.405 0.052 0.384 0.059 *** 

BCFAiso/BCFAanteiso FA80 2.518 1.217 2.643 1.119 ns 

DI 10-1/(10+10-1) FA81 0.074 0.014 0.082 0.016 *** 

DI 14-1/(14+14-1) FA82 0.061 0.015 0.071 0.018 *** 

DI 16-1/(16+16-1) FA83 0.042 0.009 0.040 0.009 *** 

DI 18-1/(18+18-1) FA84 0.701 0.041 0.665 0.043 *** 

DI Rum/(vac+rum) FA85 0.350 0.049 0.313 0.048 *** 

1 FA traits were compared between the breeds by using the Welch Two-Sample t-test. 

ns = non-significant at P > 0.05; Significant at * P < 0.05; ** P < 0.01; *** P < 0.001. SD = standard deviation.  

 

 

Table II-2. Heritability (h2) and standard errors (e) of individual fatty acids (FA), grouped fatty 

acids, and desaturation index (DI) in the Italian Simmental (IS) and Italian Holstein (IH) breeds. 

 
 

IS IH 

FA FA code h2 e h2 e 

C4:0 FA01 0.4034 0.1384 0.3711 0.2166 

C5:0 FA02 0.4311 0.1409 0.0935 0.1851 

C6:0 FA03 0.2299 0.1255 0.4891 0.2085 

C7:0 FA04 0.3158 0.135 0.1903 0.1993 

C8:0 FA05 0.2099 0.122 0.4371 0.2007 

C10:0 FA06 0.2201 0.128 0.416 0.2045 

C10:1c9 FA07 0.1973 0.1165 0.2174 0.2135 

C11:0 FA08 0.3361 0.1363 0.1304 0.1811 

C12:0 FA09 0.2432 0.133 0.2493 0.1939 

C13-iso FA10 0.2252 0.1405 0.0482 0.1594 

C13-anteiso FA11 0.1897 0.1203 0.3253 0.2041 

C12:1c11 FA12 0.2273 0.1312 0.158 0.1973 
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C13:0 FA13 0.3566 0.1409 0.1849 0.191 

C14-iso FA14 0.2506 0.1259 0 0 

C14:0 FA15 0.2397 0.1342 0.3998 0.2102 

C15-iso FA16 0.2725 0.1398 0.3533 0.2064 

C15-anteiso FA17 0.0944 0.1234 0.4067 0.242 

C14:1c9 FA18 0.3525 0.1222 0.7266 0.2334 

C15:0 FA19 0.3335 0.1388 0.3588 0.1966 

C16-iso FA20 0.2156 0.1263 0.1116 0.175 

C16:0 FA21 0.1314 0.1262 0.3716 0.2058 

C16-1t6-7 FA22 0.4001 0.1356 0.0119 0.1715 

C16:1t9 FA23 0.2665 0.1318 0.2515 0.1773 

C17-iso FA24 0.0108 0.1195 0.183 0.1919 

C16:1 c9 FA25 0.4186 0.1416 0.6043 0.2147 

C17-anteiso FA26 0.1514 0.1249 0 0 

C17:0 FA27 0.3995 0.1326 0.1622 0.198 

C17:1 c9 FA28 0.1322 0.1204 0.0996 0.203 

C18:0 FA29 0.4385 0.1399 0.3636 0.2088 

C18:1 t4 FA30 0.1567 0.1231 0.0581 0.1579 

C18:1 t5 FA31 0 0 0 0 

C18:1 t6-8 FA32 0 0 0 0 

C18:1 t9 FA33 0 0 0.132 0.1477 

C18:1 t10 FA34 0.0509 0.1094 0.0823 0.1735 

C18:1 t11 FA35 0.2686 0.1289 0.0254 0.1676 

C18:1 t12 FA36 0.1974 0.1261 0.1818 0.1758 

C18:1c9 FA37 0.0331 0.1134 0.3749 0.2146 

C18:1 c11 FA38 0.1172 0.1221 0.166 0.1739 

C18:1 c12 FA39 0.1648 0.1253 0.2058 0.184 

C18:1t16 FA40 0.1238 0.1297 0.1846 0.1902 

C18:2 t9.t12 FA41 0.1473 0.1418 0 0 

C18:2 t11.c15 FA42 0 0 0.2775 0.2064 

C18:2 c9.c12 FA43 0.3116 0.134 0.0505 0.2212 

C20:0 FA44 0.4328 0.1371 0 0 

C18:3 c9.c12.c15 FA45 0.0264 0.1035 0.3209 0.1998 

C18:2 9.11 c/t FA46 0.3495 0.1297 0.1701 0.2137 

C18:4 c6.c9.c12.c15 FA47 0 0 0.3856 0.2136 

C20:2 c11.c14 FA48 0 0 0.2278 0.1848 

C18-3 c9.t11.c15 FA49 0.1348 0.1252 0.5146 0.2012 

C20:3 c8.c11.c14 FA50 0.3723 0.1493 0.1612 0.178 
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C20:4 c5.c8.c11.c14 FA51 0.1042 0.1151 0.3588 0.2033 

C20:5 c5. c8. c11. c14. c17 FA52 0 0 0.2779 0.2036 

C22:4 c7.c10.c13.c16 FA53 0.0779 0.1192 0.0511 0.1513 

C22:5 c7.c10.c13.C16.c19 FA54 0.0404 0.1016 0.1977 0.2144 

C22:6  c4.c7.c10.c13.16.c19 FA55 0.0864 0.1051 0.395 0.2052 

SFA FA56 0 0 0.395 0.2052 

UFA FA57 0 0 0.35 0.2041 

PUFA FA58 0.1912 0.1247 0.3726 0.1938 

MUFA FA59 0 0 0.2647 0.2004 

PUFA n6 FA60 0.3052 0.1343 0.043 0.1514 

PUFA n3 FA61 0 0 0.4912 0.2081 

SCFA (C<10) FA62 0.1748 0.1229 0.2152 0.1884 

MCFA (10<C<17) FA63 0.1301 0.127 0.2674 0.1936 

LCFA (C>17) FA64 0.1164 0.1308 0.1971 0.1955 

BCFA FA65 0.1812 0.1352 0.2875 0.207 

BCFAiso FA66 0.2405 0.1321 0.3232 0.2226 

BCFAanteiso FA67 0.0819 0.1308 0.2825 0.1918 

OCFA FA68 0.3328 0.1332 0.2323 0.1647 

trans 18-1 tot FA69 0.1678 0.1229 0.2347 0.1658 

trans totali FA70 0.1717 0.123 0.2742 0.192 

UFA/SFA FA71 0 0 0.3573 0.2028 

PUFA/SFA FA72 0.1046 0.1133 0.3754 0.2068 

PUFA/(SFA-C18:0) FA73 0.058 0.1122 0 0 

n6/n3 FA74 0 0 0 0 

DHA/EPA FA75 0.047 0.0992 0 0 

AA/DHA FA76 0 0 0.14 0.1815 

AA/(DHA+EPA+DPA) FA77 0 0 0.2836 0.1892 

BCFA + OCFA FA78 0.3392 0.1392 0.0424 0.1598 

BCFA/OCFA FA79 0.3822 0.1344 0.5815 0.2265 

BCFAiso/BCFAanteiso FA80 0.0294 0.1184 0.4728 0.2218 

DI 10-1/(10+10-1) FA81 0.4163 0.1339 0.848 0.2175 

DI 14-1/(14+14-1) FA82 0.4259 0.1283 0.7328 0.2143 

DI 16-1/(16+16-1) FA83 0.4138 0.1448 0.5039 0.2159 

DI 18-1/(18+18-1) FA84 0.3317 0.137 0.3837 0.2084 

DI Rum/(vac+rum) FA85 0.3602 0.1339 0.0612 0.2058 
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Table II-3. Most significant SNPs associated with milk fatty acid traits in Italian Simmental 

(IS) and Italian Holstein (IH) breeds. SNP name (SNP), chromosome (Chr), genome position 

(Position) and GWAS significance p-value (pvalue) are reported. 

Breed Trait SNP Chr Position pvalue* 

IS C14:0 BovineHD1900014364 19 51349695 9.20E-08 

IS C14:1c9 BovineHD1900014364 19 51349695 9.20E-08 

IS ID 10-1/(10+10-1) BovineHD2600005467 26 21149234 4.64E-14 

IS ID 14-1/(14+14-1) BovineHD2600005467 26 21149234 1.15E-17 

IS ID 14-1/(14+14-1) BTB-00931586 26 21409429 3.99E-08 

IH C14:1c9 BovineHD2600005302 26 20463679 1.04E-08 

IH C14:1c9 BovineHD2600005467 26 21149234 1.54E-09 

IH C14:1c9 BTB-00931481 26 21226405 6.85E-09 

IH C14:1c9 BovineHD2600005491 26 21278993 1.98E-08 

IH C14:1c9 ARS-BFGL-NGS-110077 26 21322557 3.99E-08 

IH C14:1c9 BTB-00931586 26 21409429 1.86E-07 

IH C14:1c9 BovineHD2600005557 26 21479224 6.44E-11 

IH C14:1c9 BovineHD2600005579 26 21555707 1.90E-09 

IH C14:1c9 BovineHD2600005581 26 21564772 1.52E-08 

IH C14:1c9 BovineHD2600005591 26 21598269 2.73E-07 

IH C14:1c9 BovineHD2600005595 26 21629048 3.34E-07 

IH C14:1c9 BovineHD2600005633 26 21878305 6.50E-08 

IH C14:1c9 BovineHD2600005648 26 21926490 3.60E-08 

IH C14:1c9 BTB-00932332 26 22118554 4.71E-08 

IH C14:1c9 ARS-BFGL-NGS-107403 26 22889812 1.99E-07 

IH ID 10-1/(10+10-1) BovineHD2600005302 26 20463679 1.09E-08 

IH ID 10-1/(10+10-1) BovineHD2600005467 26 21149234 2.89E-09 

IH ID 10-1/(10+10-1) Hapmap33073-BTA-162864 26 21180893 4.52E-08 

IH ID 10-1/(10+10-1) BTB-00931481 26 21226405 2.15E-10 

IH ID 10-1/(10+10-1) BovineHD2600005491 26 21278993 7.70E-09 

IH ID 10-1/(10+10-1) BovineHD2600005497 26 21298468 4.09E-07 

IH ID 10-1/(10+10-1) ARS-BFGL-NGS-110077 26 21322557 2.78E-09 

IH ID 10-1/(10+10-1) ARS-BFGL-NGS-108305 26 21363670 2.63E-07 

IH ID 10-1/(10+10-1) BovineHD2600005535 26 21385652 9.60E-08 

IH ID 10-1/(10+10-1) BTB-00931586 26 21409429 7.61E-09 

IH ID 10-1/(10+10-1) BovineHD2600005557 26 21479224 3.19E-11 

IH ID 10-1/(10+10-1) BovineHD2600005567 26 21508165 5.24E-09 

IH ID 10-1/(10+10-1) BovineHD2600005579 26 21555707 1.18E-10 
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IH ID 10-1/(10+10-1) BovineHD2600005581 26 21564772 1.20E-09 

IH ID 10-1/(10+10-1) BovineHD2600005591 26 21598269 6.64E-09 

IH ID 10-1/(10+10-1) BovineHD2600005595 26 21629048 6.43E-08 

IH ID 10-1/(10+10-1) BovineHD2600005633 26 21878305 1.02E-08 

IH ID 10-1/(10+10-1) BovineHD2600005648 26 21926490 6.03E-09 

IH ID 10-1/(10+10-1) BovineHD2600005654 26 21954328 1.32E-07 

IH ID 10-1/(10+10-1) ARS-BFGL-NGS-116481 26 21977581 1.32E-07 

IH ID 10-1/(10+10-1) Hapmap24832-BTA-138805 26 22016380 1.32E-07 

IH ID 10-1/(10+10-1) BovineHD2600005678 26 22018949 1.32E-07 

IH ID 10-1/(10+10-1) BovineHD2600005686 26 22037112 1.32E-07 

IH ID 10-1/(10+10-1) ARS-BFGL-NGS-6259 26 22059103 1.32E-07 

IH ID 10-1/(10+10-1) BovineHD4100017766 26 22094866 1.74E-07 

IH ID 10-1/(10+10-1) BTB-00932332 26 22118554 7.12E-09 

IH ID 10-1/(10+10-1) BovineHD2600005698 26 22122641 1.73E-07 

IH ID 10-1/(10+10-1) ARS-BFGL-NGS-107403 26 22889812 3.41E-08 

IH ID 10-1/(10+10-1) BovineHD2600006436 26 24918578 1.38E-08 

IH ID 14-1/(14+14-1) BovineHD2600004833 26 18761989 3.95E-08 

IH ID 14-1/(14+14-1) BovineHD2600004938 26 19015156 2.69E-07 

IH ID 14-1/(14+14-1) ARS-BFGL-NGS-23064 26 20365711 3.13E-07 

IH ID 14-1/(14+14-1) ARS-BFGL-NGS-77668 26 20393457 3.13E-07 

IH ID 14-1/(14+14-1) BovineHD2600005288 26 20427852 1.28E-07 

IH ID 14-1/(14+14-1) BovineHD2600005302 26 20463679 5.26E-11 

IH ID 14-1/(14+14-1) BovineHD2600005467 26 21149234 3.01E-12 

IH ID 14-1/(14+14-1) Hapmap33073-BTA-162864 26 21180893 8.06E-09 

IH ID 14-1/(14+14-1) BTB-00931481 26 21226405 7.91E-13 

IH ID 14-1/(14+14-1) BovineHD2600005491 26 21278993 6.53E-11 

IH ID 14-1/(14+14-1) BovineHD2600005497 26 21298468 4.42E-09 

IH ID 14-1/(14+14-1) ARS-BFGL-NGS-110077 26 21322557 3.49E-11 

IH ID 14-1/(14+14-1) ARS-BFGL-NGS-108305 26 21363670 4.87E-08 

IH ID 14-1/(14+14-1) BovineHD2600005535 26 21385652 1.82E-08 

IH ID 14-1/(14+14-1) BTB-00931586 26 21409429 1.18E-10 

IH ID 14-1/(14+14-1) BovineHD2600005557 26 21479224 6.13E-14 

IH ID 14-1/(14+14-1) BovineHD2600005567 26 21508165 2.34E-09 

IH ID 14-1/(14+14-1) BovineHD2600005579 26 21555707 1.51E-12 

IH ID 14-1/(14+14-1) BovineHD2600005581 26 21564772 3.18E-11 

IH ID 14-1/(14+14-1) BovineHD2600005591 26 21598269 1.43E-10 

IH ID 14-1/(14+14-1) BovineHD2600005595 26 21629048 2.43E-10 

IH ID 14-1/(14+14-1) ARS-BFGL-NGS-114149 26 21702714 9.10E-08 
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IH ID 14-1/(14+14-1) BovineHD2600005633 26 21878305 1.40E-11 

IH ID 14-1/(14+14-1) BovineHD2600005648 26 21926490 8.73E-12 

IH ID 14-1/(14+14-1) BovineHD2600005654 26 21954328 3.49E-10 

IH ID 14-1/(14+14-1) ARS-BFGL-NGS-116481 26 21977581 3.49E-10 

IH ID 14-1/(14+14-1) Hapmap24832-BTA-138805 26 22016380 3.49E-10 

IH ID 14-1/(14+14-1) BovineHD2600005678 26 22018949 3.49E-10 

IH ID 14-1/(14+14-1) BovineHD2600005686 26 22037112 3.49E-10 

IH ID 14-1/(14+14-1) ARS-BFGL-NGS-6259 26 22059103 3.49E-10 

IH ID 14-1/(14+14-1) BovineHD4100017766 26 22094866 1.31E-10 

IH ID 14-1/(14+14-1) BTB-00932332 26 22118554 5.85E-11 

IH ID 14-1/(14+14-1) BovineHD2600005698 26 22122641 5.97E-10 

IH ID 14-1/(14+14-1) ARS-BFGL-NGS-107403 26 22889812 1.97E-10 

IH ID 14-1/(14+14-1) BovineHD2600006067 26 23497760 1.46E-09 

IH ID 14-1/(14+14-1) BovineHD2600006134 26 23847594 1.75E-09 

IH ID 14-1/(14+14-1) ARS-BFGL-NGS-111090 26 23920913 2.79E-07 

IH ID 14-1/(14+14-1) BovineHD2600006239 26 24238250 2.95E-07 

IH ID 14-1/(14+14-1) ARS-BFGL-NGS-1092 26 24531763 3.79E-08 

IH ID 14-1/(14+14-1) ARS-BFGL-NGS-18194 26 24575207 3.16E-07 

IH ID 14-1/(14+14-1) BovineHD2600006436 26 24918578 6.66E-10 

IH ID 14-1/(14+14-1) BovineHD2600006913 26 26152575 3.04E-07 

IH ID 14-1/(14+14-1) BovineHD2600006920 26 26182662 1.23E-07 

IH ID 14-1/(14+14-1) BovineHD2600006943 26 26242200 2.98E-07 

IH ID 14-1/(14+14-1) BTB-00935537 26 26585557 5.90E-08 

IH ID 14-1/(14+14-1) ARS-BFGL-NGS-71848 26 27213271 1.19E-07 

 

 

Table II-4. Most significant SNPs (Bonferroni cut-off p-value at 0.05) associated with milk fat 

percentage (FP) in Italian Holstein (IH) cows. SNP name (SNP), chromosome (Chr), genome 

position (Position) and GWAS significance p-value (pvalue) are reported. 

SNP Chr Position pvalue* 

Hapmap30383-BTC-005848 14 1489496 9.29E-10 

BovineHD1400000188 14 1588879 1.26E-09 

ARS-BFGL-NGS-57820 14 1651311 1.26E-09 

BovineHD1400000206 14 1679844 4.24E-10 

UFL-rs134432442 14 1736599 1.38E-10 
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ARS-BFGL-NGS-4939 14 1801116 2.29E-10 

BovineHD1400000262 14 1967325 3.36E-08 

BovineHD1400000286 14 2069181 6.45E-12 

BovineHD1400000467 14 2898515 4.10E-09 

ARS-BFGL-NGS-18858 14 2909929 3.93E-09 

BovineHD1400000480 14 2936478 3.76E-09 

BovineHD1400024350 14 3048650 1.21E-09 

BovineHD1400000870 14 4136087 6.10E-08 

* Bonferroni cut-off p-value at 0.05 

 

 

Table II-5. Genes obtained with PIA analysis considering three degrees of interaction with 

KEGG Lipid Metabolism pathways. 

breed 
degree of 

interaction 
ensembl gene ID 

gene 

symbol 
pathway 

IS 1DI 

ENSBTAG00000015980 FASN Fatty acid biosynthesis 

ENSBTAG00000015178 ECI2 Fatty acid degradation 

ENSBTAG00000001868 PCYT2 Glycerophospholipid metabolism 

ENSBTAG00000047043 DCXR Arachidonic acid metabolism 

ENSBTAG00000047957 SCD 
Biosynthesis of unsaturated fatty 

acids 

ENSBTAG00000045728 SCD1 
Biosynthesis of unsaturated fatty 

acids 

IS 2DI ENSBTAG00000016253 G6PC3 Glycolysis / Gluconeogenesis 

IS 3DI 

ENSBTAG00000008747 DCXR 
Pentose and glucuronate 

interconversions 

ENSBTAG00000000042 PYCR1 Arginine and proline metabolism 

ENSBTAG00000016253 G6PC3 Starch and sucrose metabolism 

ENSBTAG00000046173 ALG12 N-Glycan biosynthesis 

IH 1DI 

ENSBTAG00000014335 CYP17A1 Steroid hormone biosynthesis 

ENSBTAG00000026356 DGAT1 Glycerolipid metabolism 

ENSBTAG00000047957 SCD 
Biosynthesis of unsaturated fatty 

acids 

ENSBTAG00000045728 SCD1 
Biosynthesis of unsaturated fatty 

acids 
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IH 2DI 
ENSBTAG00000006429 ACO2 Citrate cycle (TCA cycle) 

ENSBTAG00000002010 PI4K2A Inositol phosphate metabolism 

IH 3DI 

ENSBTAG00000011960 GOT1 Arginine biosynthesis 

ENSBTAG00000007835 GPT Arginine biosynthesis 

ENSBTAG00000012858 NT5C2 Purine metabolism 

ENSBTAG00000000354 PDE6G Purine metabolism 

ENSBTAG00000005311 POLR3H Purine metabolism 

ENSBTAG00000012858 NT5C2 Pyrimidine metabolism 

ENSBTAG00000005311 POLR3H Pyrimidine metabolism 

ENSBTAG00000011960 GOT1 
Alanine, aspartate and glutamate 

metabolism 

ENSBTAG00000007835 GPT 
Alanine, aspartate and glutamate 

metabolism 

ENSBTAG00000011960 GOT1 
Cysteine and methionine 

metabolism 

ENSBTAG00000011960 GOT1 Arginine and proline metabolism 

ENSBTAG00000011960 GOT1 Tyrosine metabolism 

ENSBTAG00000006429 ACO2 
Glyoxylate and dicarboxylate 

metabolism 

ENSBTAG00000012858 NT5C2 
Nicotinate and nicotinamide 

metabolism 

ENSBTAG00000045703 COX15 
Porphyrin and chlorophyll 

metabolism 
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Chapter III - TRANSCRIPTIONAL PROFILING OF SWINE MAMMARY GLAND 

DURING THE TRANSITION FROM COLOSTROGENESIS TO LACTOGENESIS 

USING RNA SEQUENCING 

 

Abstract 

Colostrum and milk are essential sources of antibodies and nutrients for the neonate, playing a 

key role in their survival and growth. Slight abnormalities in the timing of 

colostrogenesis/lactogenesis potentially threatens piglet survival. To further delineate the genes 

and transcription regulators implicated in the control of the transition from colostrogenesis to 

lactogenesis, RNASeq analysis of swine mammary gland tissue from late-gestation to 

farrowing was performed. 

Three 2nd parity sows were used for mammary tissue biopsies on days 14, 10, 6 and 2 before (-

) parturition and on day 1 after (+) parturition. A total of 15 mRNA libraries were sequenced 

on a HiSeq2500 (Illumina Inc.). The Dynamic Impact Approach and the Ingenuity Pathway 

Analysis were used for pathway analysis and gene network analysis, respectively. 

A large number of differentially expressed genes were detected very close to parturition (-2d) 

and at farrowing (+1d). The results reflect the extraordinary metabolic changes in the swine 

mammary gland once it enters into the crucial phases of lactogenesis and underscores a strong 

transcriptional component in the control of colostrogenesis. There was marked upregulation of 

genes involved in synthesis of colostrum and main milk components (i.e. proteins, fat, lactose 

and antimicrobial factors) with a pivotal role of CSN1S2, LALBA, WAP, SAA2, and BTN1A1. 

The sustained activation of transcription regulators such as SREBP1 and XBP1 suggest they 

help coordinate these adaptations. 

Overall, the precise timing for the transition from colostrogenesis to lactogenesis in swine 

mammary gland remains uncharacterized. However, the transcriptomic data results support the 

hypothesis that the transition occurs before parturition. This is likely attributable to upregulation 

of a wide array of genes including those involved in ‘Protein and Carbohydrate Metabolism’, 

‘Immune System’, ‘Lipid Metabolism’, ‘PPAR signaling pathway’ and ‘Prolactin signaling 

pathway’ along with the activation of transcription regulators controlling lipid synthesis and 

endoplasmic reticulum biogenesis and stress response.  
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Contents of chapter  

III - 1. Introduction 

III - 1.1. Piglet survival  

Piglet survival is a major problem especially in modern pig production (Theil et al., 2014). 

When a piglet is being born, its risk of dying is greater than at any other stage of life. In fact, 

piglets are born deficient of energy, but at the same time, they have a very high energy 

requirements. To be able to survive, newborn piglets rely upon three different sources of energy; 

glycogen, colostrum and transient milk, which help to cover their energy requirements. Energy 

originating from oxidized glycogen, colostrum and transient milk all contribute to maintain a 

constant body temperature and to keep the piglets alive. If one of these energy sources fails to 

supply adequate amounts of energy, the piglet ends up dying either because of hunger or 

because it eventually is crushed by the sow because the piglet is too weak for adequate 

movements.  

Any change in nutritional or management strategies for late gestating sows that favors transfer 

of energy from the sow to the offspring is particularly important. This is so crucial in pigs, more 

than in other species, because piglets do not have fat depots or brown adipose tissue that is 

present in calves, lambs and rodents (Pastorelli et al., 2009). Nevertheless, although several 

studies have been done with the goal of increasing glycogen depots with changes to sow 

nutrition over the years (Seerley et al., 1974; Newcomb et al., 1991; Jean and Chiang, 1999; 

Pastorelli et al., 2009; Theil et al., 2011), it is still questionable whether glycogen deposition in 

fetuses can be stimulated by sow nutrition in late gestation (Theil et al., 2014). At the same 

time, currently, not much is known on how sow nutrition affects colostrum yield (Theil et al., 

2014), although attempts to alter macrochemical composition of colostrum by sow nutrition 

have been made (Nissen et al., 1994; Dividich et al., 2005; Loisel et al., 2013). In view of this, 

an interesting contribution could be offered by breeding selection programs for udder quality 

traits and in particular for colostrum quality and quantity (Balzani et al., 2016).  

 

III - 1.2. Swine colostrum 

Colostrum is an essential source of antibodies and nutrients for the neonate, playing a key role 

in their survival and growth (Salmon, 2000). Sow colostrum can be defined as the mammary 

secreta ingested by neonatal piglets until 24 h after birth of the first piglet (Devillers et al., 

2004b). Colostrum can be considered as the ‘elixir of life’ because of the high abundance of 
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many different components (macronutrients and micronutrients and bioactive molecules such 

as immunoglobulins, growth factors and enzymes), and many of these components are 

important for survival of the newborns and proper development of the gastrointestinal tract 

(Mei et al., 2006; Bjornvad et al., 2007). Lactose and fat in colostrum serve a main purpose of 

supplying energy, whereas the protein fraction promotes the transfer of immunity 

(immunoglobulins), stimulation of growth (growth factors) and facilitation of fat digestion 

(enzymes) (Theil et al., 2014). Approximately, one-third of sows produce less colostrum than 

the recommended level of 250 g colostrum/piglet which would be adequate for survival and 

proper growth (Quesnel et al., 2012). 

At present, it is not known exactly when or at which rate colostrum is being synthesized in the 

mammary gland, or when colostrum synthesis starts and ceases. Most of the colostrum is 

produced before the first piglet is born and, consequently, colostrum yield cannot be dependent 

only on  piglets suckling (Theil et al., 2014). 

 

III - 1.3. Formation of colostrum 

Mammogenesis occurs during prepuberty, puberty and gestation and continues during lactation 

as long as the teats are suckled (Farmer et al., 2004). If the teats are not suckled, involution will 

occur. This involution is especially rapid if the teats are not suckled during the first seven to ten 

days of lactation (Kim et al., 2001). Mammogenesis is slow during the first two thirds of 

gestation and more rapid during the last third (Ji et al., 2006). In particular, the development of 

mammary gland is crucial during the final stages of gestation when alveoli begin to distend (Ji 

et al., 2006) and there is an abrupt increase in the concentration of colostrum and milk 

constituents just prior to parturition (Kensinger et al., 1982). These stages coincides with the 

early ‘peripatum’ period, which goes from roughly one week pre-farrowing to several days 

post-farrowing. One of the dynamic shifts in mammary tissue function occurs in the peripartum 

period, with the exponential growth during late gestation culminating in the process of 

colostrogenesis/lactogenesis, and then shifting to initiation of lactation (galactopoiesis) 

(Farmer, 2006). Lactogenesis is generally subdivided in two stages: lactogenesis I, which in 

swine is initiated in late-pregnancy (around day 105) and is linked to the initiation of synthesis 

of milk-specific components and to structural and metabolic differentiation of the mammary 

glands, and lactogenesis II, which is characterized by the onset of copious milk secretion 

(Hartmann et al., 1997). There is some discrepancy in the literature about the description of the 
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switching from lactogenesis I to lactogenesis II in sow (Farmer, 2006). Nevertheless, it is 

generally accepted that colostrum production takes place during lactogenesis I (Farmer, 2006). 

The presence of this incomplete timing information is justifiable since colostrogenesis and 

lactogenesis are complex biological processes. It is clear that in this context, characterizing the 

transcriptome profile and the metabolic and signaling pathways during this essential period of 

reproduction, when any abnormalities in the timing of colostrogenesis/lactogenesis might 

threaten piglet survival (Kensinger et al., 1982), could be of great interest. 

 

III - 1.4. Longitudinal transcriptomic study 

Longitudinal (or time-course) transcriptomic studies are ideally-suited for unravelling complex 

biological behavior at a genome-wide level and provide a more detailed view of the underlying 

physiological adaptations over time (Zhao et al., 2013). Longitudinal designs have two principal 

motivations. (1) Increase the precision of a treatment by eliminating individual variation. (2) 

Examine the individual’s changing response over time (Cook and Ware, 1983). In this regard, 

the development of high-throughput technologies has revolutionized time-course study (Zhang 

and Davis, 2014), as well as transcriptome analysis in general (Fontanesi et al., 2011). 

Particularly, RNASeq technology enables the generation of more extensive transcriptome 

information providing an advantage over microarray analyses, due to its capability to quantify 

all transcripts (Kukurba and Montgomery, 2015) and not only those present on the arrays.  

 

III - 1.5. RNA sequencing  

RNA molecules are essential components of all living cells. Understanding the identity and 

abundance of each RNA molecule in a given cell under a specific condition is the ultimate goal 

of gene expression analysis. The first decade of this millennium witnessed the advent of Next 

Generation Sequencing (NGS) technologies: a revolution in biology researcher for its ability to 

acquire an unprecedented amount of data in a short time. Nowadays, RNASeq is the method of 

choice to study gene expression profile and identify novel RNA species (Hrdlickova et al., 

2017). Compared to DNA microarray-based methods, RNASeq offers less background noise 

and a greater dynamic range for detection. Most importantly, RNASeq directly reveals sequence 

identity, crucial for analysis of unknown genes and novel transcript isoforms. Although, several 

different technologies have been developed for RNASeq (Nookaew et al., 2012; Adiconis et 

al., 2013; Li et al., 2014b; Han et al., 2015), generically a typical RNASeq experiment consists 
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of isolating RNA, converting it to complementary DNA (cDNA), preparing the sequencing 

library, and sequencing it on an NGS platform. Depending on the experimental goals, there are 

several possible choices particularly referred to library construction. (Kukurba and 

Montgomery, 2015). Currently, several NGS platforms are commercially available (Metzker, 

2010). The majority of high-throughput sequencing platforms use a sequencing-by-synthesis 

method to sequence tens of millions of sequence clusters in parallel. In recent years, the 

sequencing industry has been dominated by Illumina, which applies an ensemble-based 

sequencing-by-synthesis approach (Bentley et al., 2008).  

 

III - 1.6. Differentially expressed genes (DEG) analysis 

The correct identification of differentially expressed genes (DEGs) between specific conditions 

is a key in the understanding phenotypic variation. As already explained, RNASeq has become 

the main option for these studies. The number of methods and software for differential 

expression analysis data also increased rapidly during the last decade (Costa-Silva et al., 2017). 

Overall, these methods can be grouped into two main subsets: parametric and non-parametric. 

Parametric methods capture all information about the data within the parameters. In these cases, 

it is possible to predict the value of unknown data from observing the adopted model and its 

parameters. In other words it is assumed that each expression value for a given gene is mapped 

into a particular distribution, such as Poisson (Marioni et al., 2008; Bullard et al., 2010; 

Hardcastle and Kelly, 2010) or negative binomial (Robinson and Smyth, 2007; Anders and 

Huber, 2010; Robinson et al., 2010). Regarding the RNASeq differential expression analysis, 

some tools such as edgeR (Robinson et al., 2010) and baySeq (Hardcastle and Kelly, 2010), 

adopt the negative binomial model as the main approach. Other software tools, such as NOIseq 

(Tarazona et al., 2015) and SAMseq (Li and Tibshirani, 2013), adopt non-parametric methods, 

i.e. not imposing a rigid model to be fitted. To be thorough it is worth noting other methods, 

based on transcript detection, specifically developed for the identification of unknown 

transcripts or isoforms, can also be applied to DEG analysis, such as EBSeq (Leng et al., 2013) 

and Cuffdiff2 (Trapnell et al., 2013). Nowadays, there is not a consensus about which 

methodology is most appropriate or which approach ensures the validity of the results in terms 

of robustness, accuracy and reproducibility (Costa-Silva et al., 2017). This topic in 

Bioinformatics research is still developing (Zhang et al., 2014).  
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III - 2. Aim of the study 

In recent years, RNASeq technology has been applied to the study of lactating mammary glands 

in several species (Suárez-Vega et al., 2016). Although previous studies using microarrays have 

provided some preliminary insights into the differential expression of genes (DEG) in sow 

mammary glands during the peripartum period (Zhao et al., 2013), our understanding of 

metabolic or signaling pathways in this species is still limited. The aim of this study was to 

provide a comprehensive transcriptome profiling of the sow mammary gland from 14 days prior 

to parturition to day 1 in lactation using RNASeq analysis and functional bioinformatics tools 

such as the Dynamic Impact Approach (DIA) (Bionaz et al., 2012b) and Ingenuity Pathway 

Analysis (IPA) (Ingenuity Systems, Redwood City, CA). 

 

III - 3. Materials and methods 

III - 3.1. Animal sampling and RNA extraction 

Details of the experiment design are reported elsewhere (Krogh et al., 2017a). Briefly, all 

procedures involving animals were in compliance with Danish laws and regulations for the 

humane care and use of animals in research (The Danish Ministry of Justice. 1995. Animal 

testing act, consolidation act no. 726 of September 9, 1993 (as amended by act no. 1081 of 

December 20, 1995). The Danish Ministry of Justice, Copenhagen, Denmark, 1995). Mammary 

tissue collected on days 14, 10, 6 and 2 before (-) parturition and on day 1 after (+) parturition 

from three 2nd parity crossbred sows (Danish Lande race × Yorkshire) with the highest 

colostrum yield (among 9 sows) were used for the present analysis. RNA isolation and quality 

evaluation was performed following the protocols previously described (Tramontana et al., 

2008). The average yield of total RNA (from 20.3 ± 6.9 mg tissue) was 44 ± 19 μg, and the 

average RNA integrity number (Agilent Bioanalyzer) was 8.2 ± 0.8. An aggregate summary of 

RNA extraction and quality check for all the samples is reported in Table III-1. 

 

III - 3.2. RNA sequencing 

Sequencing was performed using “High-Throughput Sequencing and Genotyping Unit” of the 

W. M. Keck Biotechnology Center at the University of Illinois at Urbana Champaign (Urbana, 

IL, USA). A total of 15 mRNA libraries were quantified by qPCR and sequenced on two lanes 

for 101 cycles from one end of the fragments on a HiSeq2500 (Illumina Inc.), using v4 HiSeq 
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SBS reagents. In total approximately 403 million single-read sequences of 100 nt in length were 

collected. Quality control metrics were performed on raw sequencing reads using the FASTQC 

v0.11.15 application. Using STAR (v2.5.1b), an index of the reference genome was built and 

single-end clean reads for each individual were aligned to the reference genome. Reads were 

mapped and annotated to the Sus scrofa genome (v10.2.86), downloaded from the 

EnsemblGenome website (Nov. 2016). Aligned reads were quantified with the Subread package 

(v1.5.0) based on the Refseq gene annotation. 

 

III - 3.3. Bioinformatics analysis 

III - 3.3.1. Identification of differentially expressed genes 

Non-expressed and weakly expressed genes, defined as having <1 read per million in n of the 

samples, where n is the size of time group replicates, were removed prior to differential 

expression (DE) analysis (Anders et al., 2013) A TMM (trimmed mean of M-values) 

normalization was applied to all samples using edgeR (Robinson and Oshlack, 2010). 

Following log transformation of the data, limma-voom method (Bioconductor packages) was 

used to conduct DE analyses. The limma module utilizes a standard variance moderated across 

all genes using a Bayesian model and produces p-values with greater degrees of freedom 

(Ritchie et al., 2015). The voom module was used to transform the data based on observational 

level weights derived from the mean-variance relationship prior to statistical modeling, where 

time was considered as fixed effect and animal as random effect (Law et al., 2014). 

Differentially expressed genes across different time points were defined as genes with a 

Benjamini–Hochberg multiple-testing adjusted p-value of ≤ 0.05. To identify the longitudinal 

transcriptional gene response close to parturition, the time point -14 day was used as baseline 

for each time comparison. In order to highlight the metabolic processes underlying mammary 

changes associated with the colostrogenesis and the onset of lactogenesis in the last stages of 

gestation leading up to parturition, we relied on DEGs between -10vs-14, -6vs-14, -2vs-14 and 

+1vs-14 time comparisons. 

 

III - 3.3.2. Dynamic impact approach (DIA)  

The DIA software (Bionaz et al., 2012b) was used for functional analyses. Briefly, DIA uses 

the systems information from the KEGG database and ranks pathways calculating the overall 

impact (e.g., biological importance of a given pathway as a function of the change in expression 
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of genes composing the pathway) and flux (direction of impact; e.g, average change in 

expression as up-regulation/activation, down-regulation/inhibition, or no change) of biological 

pathways. For this purpose, the whole dataset with Entrez gene IDs, FDR, FC, and p-values of 

each time comparison were uploaded in DIA and an overall cut-off (FDR and p-value ≤ 0.05) 

was applied as the threshold. 

 

III - 3.3.3. Gene network analysis 

Ingenuity Pathway Analysis (IPA) was performed to identify transcription regulators and their 

networks with other genes, within the list of significant DEG (similar cut-off as DIA analysis; 

FDR and p-value ≤ 0.05) at each time comparison. Software features and the IPA knowledge 

base were used for the analysis (https://www.qiagenbioinformatics.com). 

 

III - 3.3.4. Verification by real-time PCR 

The expression of LALBA, CSN2, PAEP, and LTF was analyzed to verify the physiologic 

response of the mammary gland as farrowing approached. These genes are well-established 

markers of mammary-specific genes. Complete information about cDNA synthesis and qPCR 

performance are reported elsewhere (Vailati-Riboni et al., 2016). After normalization with the 

geometric mean of three internal control genes (API5, VABP, and MRPL39), qPCR data were 

log2 transformed prior to statistical analysis to obtain a normal distribution. Statistical analysis 

was performed with SAS (v 9.4). Normalized, log2 transformed data were subjected to ANOVA 

with PROC MIXED. The statistical model included time (-14, -10, -6, -2, and +1 day from 

farrowing) as the fixed effect, and sow as the random effect. The Kenward-Roger statement 

was used for computing the denominator degrees of freedom. Fold change for the time 

comparisons -10vs-14, -6vs-14, -2vs-14, and 1vs-14 were then calculated from the estimates of 

the model. For each of the four genes and comparisons FDR, fold change, and p values are 

reported in Table III-2, together with the respective results from the sequencing analysis.  

 

III - 4. Results 

III - 4.1. RNASeq analysis and DEG 

An aggregate summary of RNA sequencing and alignment for all the samples is reported in 

Table III-3. Illumina sequencing was effective at producing large numbers of high-quality reads 
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from all samples. On average, 92% of the total reads were mapped successfully. Among the 

aligned reads, 91.8% were mapped to unique genomic regions. Results for total number of DEG 

due to time are presented in figure 1. Considering an FDR and p-value ≤ 0.05 among the 9393 

genes (after annotation with the entrez genes ID) a total of 0, 17 (15 upregulated and 2 

downregulated), 788 (451 upregulated and 337 downregulated), and 2884 (1508 upregulated 

and 1376 downregulated) were differentially expressed for -10vs-14, -6vs-14, -2vs-14, +1vs-

14 time comparisons, respectively.  

For further analysis with DIA (Bionaz et al., 2012b) and IPA we focused on DEG between -

2vs-14 and +1vs-14 time comparisons, where the largest numbers of activated and inhibited 

genes were detected. The -2vs-14 comparison represents the difference in gene expression 

patterns between a gland with limited growth and a gland that is near full-term, i.e. genes that 

encompass the last stages of functional differentiation. In contrast, the +1vs-14 comparison 

represents the difference in mammary tissue between a stage with limited mammary growth 

and a functional mammary gland which had entered into the lactogenesis stage (Zhao et al., 

2013). To highlight the overall weight of genes in each comparison, the top ten upregulated 

genes were underscored (Tables III-4 and -5). CSN1S2 and LALBA were the most-expressed 

genes at 2d prepartum, whereas WAP, CSN1S2, SAA2 and LALBA had a marked upregulation 

at 1d postpartum. The overlap and specific upregulated genes between the last two time 

comparisons are reported in Table III-4. 

 

III - 4.2. DIA results 

III - 4.2.1. Overall summary of KEGG categories 

The DIA results are summarized in Figure III-2. They provide an overview of impact and flux 

for each KEGG category calculated following DIA procedures (Bionaz et al., 2012b). We 

clearly observed no significant changes in -10vs-14 and -6vs-14 time comparisons because of 

the lack of DEG associated with these comparisons (data not shown). However, closer to 

parturition (-2vs-14 comparison), we detected an evident activation of all main categories and 

in particular ‘Metabolism category’ and ‘Organismal Systems’ pathways, which became 

stronger considering the postpartum stage (+1vs-14). Focusing only on these main categories 

and considering the related subcategories with flux value at least 50% of impact value, clearly 

within ‘Metabolism’ the subcategory ‘Lipid Metabolism’ was the most-impacted and recurrent 

in both comparisons, followed by ‘Metabolism of Other Amino Acids’. It was not possible to 
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highlight a recurrent subcategory within ‘Organismal Systems’ with flux value at least 50% of 

impact value in the last 2 comparisons, thus, we chose the recurrent subcategory with the 

highest impact and upregulated flux: ‘Endocrine system’. Regarding the other KEGG pathway 

categories (i.e. ‘Genetic Information Processing’, ‘Environmental Information Processing’ and 

‘Cellular Processes’), we observed a marked downregulation of all ‘Genetic Information 

Processing’ subcategories and a marked upregulation of ‘Environmental Information 

Processing’ at 1 day postpartum. The above general results only provide information about the 

overall impact and the general direction of the impact (flux) of each significant category and 

subcategory in the dataset. With the aim of reaching a better understanding of the biological 

relevance of each significantly impacted category/subcategories, we focused on the single 

metabolic pathways falling within the main subcategories of interest particularly ‘Lipid 

Metabolism’ and ‘Endocrine system’ (Figures III-3 and -4).  

Except ‘Primary bile acid biosynthesis’, for the ‘Lipid Metabolism’ subcategory we uncovered 

a clear upregulation of all pathways. In particular, ‘Fatty acid biosynthesis’ was the most 

impacted and upregulated pathway in both comparisons followed by ‘Arachidonic acid 

metabolism’ and ‘Steroid hormone biosynthesis’ at 2d prepartum, and ‘Steroid biosynthesis’ 

and ‘Synthesis and degradation of ketone bodies’ at 1d postpartum. Within ‘Endocrine system’, 

we detected a marked upregulation of ‘Prolactin signaling pathway’ recurrent in the last 2 

comparisons, followed by ‘Ovarian steroidogenesis’ and ‘PPAR signaling pathway’ at 2d 

prepartum and ‘PPAR signaling pathway’ and ‘Thyroid hormone synthesis’ at 1d postpartum. 

There was a marked downregulation of ‘Adipocytokine signaling pathway’ at 1d postpartum 

and ‘Insulin signaling pathway’ in the last 2 comparisons. 

 

III - 4.2.2. Most impacted pathways 

To highlight the overall most impacted and upregulated pathways, we considered all pathways 

without any category classification and with flux value at least 50% of impact value (Figures 

III-5 and -6). When the last stage (-2d vs -14d) of gestation was considered, ‘Fatty acid 

biosynthesis’, ‘Retinol metabolism’, ‘Drug metabolism – other enzymes’, ‘PPAR signaling 

pathway’, ‘Galactose metabolism’, ‘Steroid hormone biosynthesis’, ‘Metabolism of 

xenobiotics by cytochrome P450’, ‘Chemical carcinogenesis’, ‘Fatty acid degradation’, 

‘Arachidonic acid metabolism’ were the most impacted and upregulated pathways. When the 

parturition stage (+1d vs -14d) was considered, ‘PPAR signaling pathway’, ‘Steroid 
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biosynthesis’, ‘Fatty acid biosynthesis’, ‘Synthesis and degradation of ketone bodies’, ‘Mineral 

absorption’, ‘beta-Alanine metabolism’, ‘Galactose metabolism’, ‘Fatty acid degradation’, 

‘Drug metabolism - other enzyme’ and ‘Histidine metabolism’ were the most impacted and 

upregulated pathways. 

 

III - 4.2.3. Enrichment analysis of genes in most recurrent pathway categories  

As shown above, ‘Lipid metabolism’ and ‘Endocrine system’ were the most recurrent pathway 

subcategories. A KEGG enrichment analysis was performed to identify the most upregulated 

genes among these subcategories (FDR and p-value ≤ 0.05). To underscore the weight of a 

specific gene within the most recurrent KEGG pathway categories, the genes used by DIA for 

impact and flux calculations were extrapolated and divided into three groups: upregulated genes 

in ‘+1vs-14’, ‘-2vs-14’ and ‘both’ time comparisons. The summary of upregulated genes is 

reported in Table III-6. 

 

III - 4.3. Gene network analysis results 

IPA allowed the uncovering of relationships between transcription factors and DEG. 

Considering a ± 2 ‘Activation z-score’ value and p-value cut-off of 0.01, we identified 6 and 

55 upstream transcription regulators (TR) in -2vs-14 and +1vs-14 time comparisons, 

respectively (Supplementary Table III-S1). To highlight and summarize similarities and 

differences in the activation of TR, the overlap between the two comparisons was performed 

and the activated TR were extracted. The results are reported in Table III-7. 

 

III - 5. Discussion 

Although there is some discrepancy in the literature as to the specific timing of colostrogenesis 

and lactogenesis, the consensus is that swine lactogenesis is activated in late-pregnancy 

between day 100 and 110 of gestation (Farmer et al., 2006)(Zhao et al., 2013). Lactogenesis is 

further subdivided in two stages: lactogenesis I, which is initiated in late-pregnancy and is 

linked to the initiation of synthesis of colostrum and milk specific components and to structural 

and metabolic differentiation of the mammary gland (MG); and lactogenesis II, which is 

characterized by the onset of copious milk secretion (Farmer et al., 2006). It is generally 

accepted that colostrum production takes place during lactogenesis I and that the transition from 
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colostrum to mature milk occurs within 1 to 2 days postpartum, when removal of colostrum 

from the mammary glands enhances the rate of fat secretion and accelerates the increase in 

lactose concentrations towards that of mature milk (Farmer et al., 2006). Our results partly 

confirmed these timings. Our results indirectly suggest that at 14 days prior to parturition (day 

100 of gestation) the MG had already entered lactogenesis stage I, hence, the extremely low 

number of DEG when comparing both -10d, and -6d to -14d stage. The large numbers (788) of 

DEG uncovered in the -2dvs-14d time comparison reflects a strong activation of many 

metabolic processes compatible with the shifting from stage I to stage II of lactogenesis 

occurring before parturition in this species (Bussmann et al., 1996). This is consistent with the 

consideration that MG reached the greatest degree of structural development at that time, and 

the preparation for copious milk synthesis and secretion had begun (Farmer, 2012).  

The transition period from a non-lactating to lactating state requires important metabolic 

changes to enable the shift of nutrient prioritization from body reserves towards the mammary 

gland for milk production. It is clear that the marked number of DEG (2884) detected at day 1 

postpartum vs 14 days prepartum reflects the extraordinary metabolic changes in the swine 

mammary gland once it fully entered into crucial phases of lactogenesis. A general overview 

of DIA results confirm this conclusion. In fact, the overall activation of all ‘Metabolic 

pathways’ and in particular of ‘Lipid Metabolism’, ‘Metabolism of Other Amino Acids’, 

‘Carbohydrate Metabolism’ and ‘PPAR signaling pathways’ is compatible with the transition 

from a non-lactating to lactating state. This initial stage involves cellular development of the 

milk synthesis apparatus, and expression of genes associated with synthesis of milk components 

(i.e. milk proteins, fat and lactose) (Kensinger et al., 1982). At the same time, the general 

inhibition of ‘Genetic Information Processing’, the specific inhibition of ‘Cell Growth and 

Death’ in ‘Cellular Process’ and of ‘Development’ in ‘Organismal System’ is consistent with 

the fact that the mammary gland has already significantly grown in mass (Ji et al., 2006b).  

At farrowing, the MG is fully involved in the accumulation and secretion of colostrum and 

milk, with their nutritional and immunological proprieties confirmed by the activation of 

‘Immune System’, ‘Endocrine System’ and ‘Excretory System’. The role of prolactin secretion, 

which peaks around farrowing (Devillers et al., 2004a) stimulates the gland to switch from 

formation and accumulation of colostrum to synthesis and secretion of milk components, is 

supported by the upregulation of ‘Prolactin signaling pathway’. In summary, our results 

indicate that the transition from colostrogenesis to lactogenesis occurs between 6 and 2 days 
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before expected parturition. This is likely attributable to upregulation of a wide array of genes 

including those involved in ‘Protein and Carbohydrate Metabolism’, ‘Immune System’, ‘Lipid 

Metabolism’, ‘PPAR signaling pathways’ and ‘Prolactin signaling pathway’. 

 

III - 5.1. Protein and Carbohydrate Metabolism  

It is known that concentrations of total protein in sow mammary secretions are highest at 

parturition (Hurley, 2014). The evident upregulation in the last comparison of ‘Amino Acid 

Metabolism’ and ‘Metabolism of Other Amino Acids’ pathways is consistent with the strong 

activation of synthesis of the major milk protein during the onset of lactation. These changes in 

protein concentrations mirror the changes in immunoglobulin content, highly abundant in 

colostrum with a gradual decrease in milk, and concurrently a lower casein content in colostrum 

followed by a high increase during the postpartum period (Hurley, 2014). While 

immunoglobulin concentrations decline significantly and β-lactoglobulin levels are relatively 

constant from the colostrum period through lactation, the proportion of casein and α-

lactalbumin increases considerably in the postpartum period (Hurley, 2014). These previously 

reported responses are confirmed in our results by the strong upregulation of CSN2, CSN1S2, 

CSN1S1 and LALBA, which are among the overall top upregulated genes in the last 2 

comparisons along with the marked upregulation of WAP at 1 day postpartum. The upregulation 

of LALBA deserves particular consideration because of its involvement in lactose biosynthesis 

(Ramakrishnan et al., 2001). Lactose is the major carbohydrate in sow milk and the major 

osmole in milk, responsible for drawing water into the secretory vesicles (Hurley, 2014). 

Lactose concentrations are low in colostrum then increase gradually over the first 2 to 3 days 

of lactation (Hurley, 2014). Our transcriptomic results confirmed this evidence, showing a 

marked upregulation of ‘Carbohydrate Metabolism’ during the transition from late pregnancy 

to parturition, driven by upregulation of many genes and particularly by LALBA, B4GALT1 and 

HK2 activity all involved in ‘Galactose Metabolism’ pathway. 

Milk Caseins. There was a marked upregulation of CSN1S2 (alpha-S2-casein) at 2d prepartum 

and 1d postpartum [FC = 629.57 and 3858.51]. Several studies reported CSN1S2 as one of the 

most up-regulated caseins increasing in expression during lactation in bovine (Gao et al., 2013), 

pig and mouse (Bionaz et al., 2012a). It was also found to be expressed in colostrum and mid 

lactation milk in goats (Crisà et al., 2016). The temporal expression pattern of α-casein genes 

is similar in many species with CSN1S2 as the most upregulated followed by CSN1S1. Our 
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results also confirmed this pattern in pig with a lower expression of CSN1S1 [FC = 4.00 and 

5.25] compared with CSN1S2.  

An expected result was the marked upregulation of CSN2 [FC = 31.01 and 33.52], a member 

of the β-casein family. Beta casein is the principal protein in human milk and the primary source 

of essential amino acids for a suckling infant. The increases in expression from 2d prepartum 

to 1d postpartum of CSN2 was not surprising because it is known that the proportion casein of 

total milk protein sharply increases by 24 h postpartum (Hurley, 2014) and because caseins, 

together with the whey proteins, represent the 90% of milk protein fraction (Farrell et al., 2004). 

In this regard, it is also known that the mRNA abundance of WAP in monogastrics appears to 

be as high or higher than caseins (Bionaz et al., 2012a). This is in agreement with our results at 

1d postpartum where we found the abrupt upregulation of WAP (whey acidic protein) [FC = 

4205.80]. Whey acidic protein is the major whey protein in the milk of many species, including 

the pig where it is secreted at a consistent level throughout lactation (Simpson et al., 1998). The 

increase in expression of WAP in monogastrics was proportional to LALBA (Bionaz et al., 

2012a). Our result confirmed this relationship [LALBA, FC = 128.51 and 1275.53].  

It is well established that milk protein is affected by energy content of the diet and at the same 

time by the availability of amino acids (AA) (Bionaz et al., 2012a). In this sense, the transport 

of AA is one of the major limitations for milk protein synthesis. A comprehensive review of 

AA transporters in the mammary gland and their functional and molecular regulation was 

recently conducted by Shennan and Boyd (Shennan and Boyd, 2014). Furthermore, the marked 

upregulation of SLC7A4 in the last comparison [FC = 32.27] is noteworthy. SLC7A4 codes for 

the CAT-4 protein, which is related to other members of the SLC7 family of cationic amino 

acid transporters found highly expressed in swine placental tissue (Vallet et al., 2014). 

Considering that SLC7A4 is known as an important paralog of SLC7A1, coding for the CAT-1 

protein, which was identified in porcine MG where its abundance increases at early lactation 

compared with prepartum and it is positively correlated to β-CN and α-LA (Manjarin et al., 

2011), we speculate that SLC7A4 in mammary epithelial cells (MEC) could enhance the 

mammary uptake of leucine (Leu), hence, stimulating protein synthesis through activation of 

the mTOR cell signaling pathway (Rezaei et al., 2016; Gao et al., 2015). Krogh et al. (Krogh et 

al., 2017b) showed recently that Leu is the most extracted AA by the sow mammary gland in 

early lactation (d+3). In this study, we detected an upregulation [FC = 2.04] at 1d postpartum 

of another solute carrier family: SLC7A8, coding for LAT2, that, together with LAT1, have 
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been proposed to be involved in Leu uptake in the mammary gland (Shennan et al., 2002). In 

the same way, insulin signaling plays an important role in the control of milk protein synthesis 

by inducing translation via activation of the mTOR pathway (Bionaz et al., 2012a). The insulin 

effect prevents mTOR inhibition by blocking (via phosphorylation) the tuberous sclerosis 

proteins (i.e., TSC1 and TSC2), which are the main inhibitors of mTOR. In this regard, it was 

interesting to note the downregulation of TSC1 at the postpartum stage [FC = -1.24]. The 

marked upregulation of CTGF (connective tissue growth factor) at 1d postpartum [FC = 13.16], 

which contributes to and is required for lactogenic differentiation in mouse mammary gland 

(Morrison et al., 2010), also was noteworthy. 

Lactose synthesis. Expression of LALBA, encoding α-lactalbumin, was strongly upregulated at 

2d prepartum and 1d postpartum [FC = 128.51 and 1275.53]. This is one of the main milk 

proteins involved in ‘Carbohydrate Metabolism’ via activation of ‘Galactose metabolism’. In 

fact, LALBA is a component of the lactose synthetase complex that uses glucose and UDP-

galactose as substrates for the synthesis of lactose in the Golgi complex (Messer and Elliott, 

1987). Our result is in agreement with findings of other studies, where LALBA upregulation 

was detected towards the end of gestation, just before parturition (Robinson et al., 1995; Theil 

et al., 2005). This result is also consistent with the low α-lactalbumin concentrations in swine 

colostrum, and the gradual increase along with lactose through the first days of lactation 

(Hurley, 2014). However, if glands are not suckled by 12 th after parturition (i.e. during the 

colostrum period), expression of LALBA is decreased 24 h after parturition in response to lack 

of colostrum removal (Theil et al., 2006). 

Regarding the lactose synthase enzyme complex, it was noteworthy that in the last 2 

comparisons B4GALT1 was upregulated [FC = 2.40 and 3.27]. The B4GALT1 gene encodes 

one of seven beta-1,4-galactosyltransferase (beta4GalT) proteins of the complex and is unique 

because it participates both in glycoconjugate and lactose biosynthesis. In fact, the first enzyme 

in the pathway adds galactose to N-acetylglucosamine residues that are either monosaccharides 

or the nonreducing ends of glycoprotein carbohydrate chains. The second enzyme is restricted 

to lactating mammary tissue where it forms a heterodimer with α-lactalbumin to catalyze UDP-

galactose + D-glucose <=> UDP + lactose (Ramakrishnan et al., 2001).  

The transport of UDP-galactose into the Golgi is regulated by SLC35A2, which is considered a 

rate-limiting process in lactose synthesis (Mohammad et al., 2012). The expression of this gene 

was upregulated in the 2 last comparisons [FC = 2.05 and 2.01]. The marked upregulation of 
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HK2 [FC = 5.02] at 1d postpartum is important in the context of lactose biosynthesis. In fact, 

hexokinase (HK) is considered to have a potential controlling step for glucose availability for 

lactose synthesis (Mohammad et al., 2012). In rodents, HK2 is detected only after parturition 

and it was speculated that the presence of HK2 during lactation may lead to both an increase in 

free glucose for lactose synthesis and increased activity of the pentose phosphate shunt to 

generate reducing equivalents for lipogenesis (Kaselonis et al., 1999).  

 

III - 5.2. Immune System  

The concept that milk, mammary secretions, and the mammary gland have major roles in 

immune defense has long been proposed (Wheeler et al., 2007). It is well-established that both 

colostrum and milk proteins have nutritive and immunological functions for the newborn 

(Sanchez et al., 1992). This is crucial for pigs that have an epitheliochorial placenta 

impermeable to immunoglobulins (Ig) (Salmon, 2000), thus, neonate survival depends upon the 

passive acquisition of maternal immunity. (Kruse, 1983). Immunoglobulins are the primary 

protein components of colostrum with an immunological function (Hurley and Theil, 2013). 

Immunoglobulin G, in particular, is the major immunoglobulin in sow colostrum and its 

concentration remains elevated for the initial hours postpartum and then starts to decline 

consistently (Hurley, 2014). In bovine it is known that a large amount of IgG immunoglobulins 

are transferred from the blood stream across the mammary barrier into colostrum and milk by 

a specific transport mechanism (Larson et al., 1980). In pigs it would also appear that colostrum 

is not a true mammary secretion since 90% of its immunoglobulin content is of serum origin 

(Bourne and Curtis, 1973).  

The transport of immunoglobulins from the maternal plasma across the mammary barrier into 

the colostrum is highly-selective (Mayer et al., 2005) and it is known that FcRn plays an 

important role in the IgG transport during colostrum formation in several species (Mayer et al., 

2002; Lu et al., 2007). In this regard, our results showed no-differential expression of FCGRT 

(Fc fragment of IgG receptor and transporter) among time comparisons. Considering the time-

window of our experiment, we speculate that this result is consistent with the need for sustained 

expression of FCGRT as a way to support colostrum synthesis. In fact, it is known that FcRn 

expression coincides with Stage 1 lactogenesis (the onset of colostrogenesis) (Barrington et al., 

1999). Although our data did not reveal transcriptional activation of immunoglobulin synthesis, 

there was an evident overall increase of MG innate immune response and production of 
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antimicrobial factors during lactation. In fact, it should be noted that colostrum and milk not 

only contain immunoglobulins, but also contain a range of antimicrobial factors and factors that 

may impact the immune system (Hurley and Theil, 2011). In this sense, our results highlighted 

the upregulation from late pregnancy to parturition of several genes that are involved in innate 

immune response in swine MG. Some have direct or indirect antimicrobial, chemoattractant 

and pathogen recognition activity including lactoferrin, haptoglobin, serum amyloid A-2 

protein, chemokine, osteopontin, toll like receptor, ceruloplasmin. 

Antimicrobial components and chemoattractant activity. Antimicrobial proteins naturally 

present in colostrum and milk have the ability to kill and inhibit a broad spectrum of bacteria. 

In this regard, the marked upregulation of HP (haptoglobin) in the last 2 comparisons [FC = 

29.27 and 204.86] was noteworthy. Haptoglobin is an acute-phase protein responsive to 

inflammation and infection (Lai et al., 2009) that has already been shown to exert immune 

modulating functions on the innate and adaptive immune system of the pig (Hiss-Pesch et al., 

2011). At 1d postpartum there was also a significant upregulation of LTF (lactotransferrin) [FC 

= 3.92]. This gene is a member of the transferrin gene family and is a major iron-binding protein 

in milk and body secretions with an antimicrobial activity, making it an important component 

of the non-specific immune system (Wheeler et al., 2007). Our result is consistent with the fact 

that lactotransferrin concentrations in swine colostrum at parturition are high and remain 

elevated through day 3 of lactation, and then decline by day 7 (Hurley, 2014).  

Milk is also known to exert a potent chemotactic activity on neutrophils (Rainard et al., 2008). 

The prompt recruitment of neutrophils is crucial for the containment of a number of pathogens 

at sites of infection, and is considered an important arm of innate host defenses against 

pathogenic microorganisms (Nathan, 2006). In this sense, the role of the chemokine 

superfamily that encode secreted proteins involved in immunoregulatory and inflammatory 

processes must be underscored. Both CXCL2 and CXCL10 encode chemokine antimicrobial 

proteins with a marked upregulation at 1d postpartum [FC = 17.87 and 5.34, respectively]. 

Bovine colostrum contains all main chemokines (CXCL1, CXCL2 and CXCL3), but 

concentrations of CXCL2 are generally the lowest and decrease sharply such that it is 

undetectable in milk after few days of lactation (Rainard et al., 2008). From that standpoint, the 

strong upregulation of growth-regulated protein homolog gamma (also known as CXCL3) at 

1d postpartum [FC = 36.64] is noteworthy. CXCL3/GRO-gamma is involved in the chemokine 

signaling pathway and (in the absence of inflammation) is considered the major chemotactic 
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factor for neutrophils secreted constitutively into milk (Rainard et al., 2008). Our results 

emphasized a major role of CXCL2 and CXCL3 in the transition from colostrum to mature milk 

in swine, probably to help in the prompt recruitment of neutrophils.  

We also detected a marked upregulation of C7 [FC = 7.43] at 1d postpartum. This gene encodes 

a serum glycoprotein that forms a membrane attack complex together with complement 

components C5b, C6, C8, and C9 as part of the terminal complement pathway of the innate 

immune system. In bovine milk, these complement components are found in high 

concentrations in the first 2 days after parturition and then decrease during the following days 

(Zhang et al., 2015). In the last 2 time comparisons we also detected the upregulation of C4A 

(Complement C4A) [FC = 2.05 and 5.73], which acts in concert with other complement 

components to hasten the destruction of pathogens by phagocytes (Janeway CA Jr et al., 2001). 

It is known that milk and colostrum are rich in host-resistance factors, among the others C4 and 

C3 proactivators (Goldman, 1977). Even in the absence of cognate interactions, the complement 

system participates in innate immunity providing efficient and rapid protection (Trégoat et al., 

1999). The levels of complement fractions C3 and C4 have been studied in the human transition 

from colostrum to mature milk, where C3 and C4 decrease over lactation with a highest 

concentration of C3 in colostrum and a highest concentration of C4 in mature milk (Trégoat et 

al., 1999). Thus, our results confirm a similar trend in the pig.  

The marked upregulation of ceruloplasmin (CP) [FC = 258.47] was consistent with previous 

studies in pigs, where expression of CP increases in late pregnancy and especially upon 

lactation, with a correlation between the degree of mammary mRNA expression and the content 

of milk ceruloplasmin (Cerveza et al., 2000). Although a specific function for CP in the 

mammary gland is unknown, it may participate in the metabolism of copper (Cerveza et al., 

2000).  

The antimicrobial protein encoded by LYZ (lysozyme) was downregulated in the last 2 

comparisons [FC = -3.22 and -2.66]. Lysozyme has nonspecific antimicrobial activity that is 

present in many secretions, tissues, and phagocytic cells of mammals but the role in swine 

mammary secretions is not clearly understood, even if it is thought to contribute to overall 

antibacterial activity (Wagstrom et al., 2000). Krakowski et al. (Krakowski et al., 2002) 

reported lysozyme activity in sow colostrum immediately after parturition, however Chandan 

et al. (Chandan et al., 1968) did not find lysozyme activity in sow milk. Proinflammatory 

cytokines mediate the early local and systemic responses to microbial challenges and may play 
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a key role in development of the neonatal immune system (Nguyen et al., 2007). In this regard, 

it was also interesting that IPA results showed a pattern of cytokines predicted to be activated: 

TNF, IFNG, OSM, IL6, IL1B, TNFSF11, IL5, IFNL1, CSF3, TNFSF13B, IL13, IFNB1, IL1A, 

IFNA2, IFNA1/IFNA13, IL15, IFNL4, THPO, and IFNK. We also detected the upregulation 

at 1d postpartum of IL13RA1 (Interleukin 13 Receptor Subunit Alpha 1) [FC = 1.95], IL15 

(Interleukin 15) [FC = 1.57], IL17RB (Interleukin 17 Receptor B) [FC = 2.91], TNFSF13 

(Tumor Necrosis Factor Superfamily Member 13) [FC = 2.31], TNFRSF12A (TNF Receptor 

Superfamily Member 12A) [FC = 1.76], and TNFRSF1A (TNF Receptor Superfamily Member 

1A) [FC = 1.66]. The presence or transfer of these cytokines has not been studied in porcine 

colostrum/milk and there is also a lack of information for humans and other species about the 

persistence or function of these maternal cytokines in neonates after transfer via suckling 

(Nguyen et al., 2007). The upregulation of F7 and F10 (Coagulation Factor VII and X) at 1d 

postpartum [FC = 6.44 and 5.01] also is noteworthy because it is known that the coagulation 

system is part of the innate immune system and its local activation has been found to play an 

important role in the early host response to infection (van der Poll and Herwald, 2014).  

There was an abrupt upregulation of SAA2 (serum amyloid A-2 protein) [FC = 3039.23] at 1d 

postpartum. This isoform is considered the most predominant member of the SAA family 

expressed in the swine mammary gland (Rodriguez et al., 2009). Porcine SAA mRNA 

production increased during lactation and stimulates the neonatal immune response by 

enhancing the recruitment of mucosal gut B lymphoblasts (potentially influencing Ig 

concentrations) conferring active and passive protection on neonates and providing local 

protection for the mammary gland (Rodriguez et al., 2009). The upregulation of CD14 [FC = 

24.65] at 1d postpartum was noteworthy. The protein encoded by this gene is a surface antigen 

that cooperates with other proteins to mediate the innate immune response to bacterial 

lipopolysaccharide. Colostrum has high concentrations of soluble CD14 that decrease over 

time, with the highest concentration detected in “transitional” milk (0 to 4 d postpartum) (Lee 

et al., 2003). Considering the enrichment of sCD14 in colostrum and milk, Filipp et al. (Filipp 

et al., 2001) speculated it plays a role in actively stimulating the immune system and 

homeostasis of IgM of the suckling neonate.  

The marked upregulation of SPP1 (also known as OST) at 1d postpartum [FC = 14.61] is in 

agreement with data from RNA isolated from colostrum and mid lactation milk from goats in 

which it was the most upregulated gene (Crisà et al., 2016). SPP1, encoding the osteopontin 
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protein, is considered essential for mammary gland development, milk production, local 

mammary gland immunity and seems to have a significant role in the modulation of milk 

protein gene expression (Dudemaine et al., 2014; Sheehy et al., 2009). Despite these biologic 

associations, the precise role of osteopontin in the mammary gland is unclear. Several studies 

have shown an association between the expression of the SPP1 and milk yield by enhancing 

the expression of CSN2 (Sheehy et al., 2009), but it has also been related to mammary gland 

morphogenesis (Nemir et al., 2000) and newborn immunity (Alain et al., 2009). Our result 

seems to suggest a biologic role of this gene during swine lactation but further analyses are 

required.  

Pathogen recognition. We detected the upregulation of TLR2 [FC = 4.45 and 7.32] at 2d 

prepartum and 1d postpartum. This gene encodes a protein member of the Toll-like receptor 

(TLR) family and plays a fundamental role in pathogen recognition and activation of innate 

immunity (He et al., 2016). The main bacterial ligands for TLR2 are peptidoglycan and 

lipoteichoic acid (LTA) of Gram-positive bacteria (Rainard and Riollet, 2006). TLR2 is known 

to be expressed in mammary epithelial cells in bovine, where, the recognition of specific 

molecular motifs (i.e. PAMP), determines a rapid and complex innate cascade (Stelwagen et 

al., 2009). We also detected the upregulation at 1d postpartum of TLR4 [FC = 2.04], the main 

signaling receptor for most bacterial LPS, and the major component of the outer membrane of 

Gram-negative bacteria. TLR4 also acts as the signal-transducing receptor for whole Gram-

negative bacteria and for the fusion protein from respiratory syncytial virus (LeBouder et al., 

2003).  

The marked upregulation of LBP in the last 2 comparisons was surprising [FC = 372.18 and 

20.89]. The lipopolysaccharide-binding protein (LBP) is one of the most-abundant proteins 

during infections with Gram-negative bacteria, and is involved in the acute-phase immunologic 

response. The main function of this protein is to bind bacterial lipopolysaccharides (LPS) 

expressed on the outer cell wall of bacteria, acting as a carrier for LPS and to help control LPS-

dependent monocyte responses (Stelwagen et al., 2009). The expression of LBP was also 

demonstrated in mouse mammary gland early during involution, accompanied by a strong 

increase in the expression of CD14 protein (Stein et al., 2004). Cow colostrum also contains 

LBP (Nissen et al., 2012). Our result seems to confirm an important role of LBP in swine 

mammary gland.  
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The upregulation of LY96 (Lymphocyte Antigen 96) [FC = 5.02] also appears biologically-

relevant in the context of pathogen recognition. This gene encodes a protein associated with 

TLR4 on the cell surface and confers responsiveness to LPS, thus, providing a link between the 

receptor and LPS signaling. It is known that TLR4 cooperates with LY96 and CD14, both of 

which were upregulated at 1d postpartum and could indicate a response to mediate the innate 

immune response to bacterial LPS (Poltorak et al., 1998; Tsukamoto et al., 2010). The 

upregulation of ICAM1 at 1d postpartum was significant [FC = 4.42]. This gene encodes a cell 

surface glycoprotein, which is typically expressed on endothelial cells and cells of the immune 

system. The fact that human milk contains substantial amounts of slCAM-1 indicates that it 

could affect the immune system of the neonate (Xyni et al., 2000). This gene could also have a 

similar role in swine colostrum and milk.  

 

III - 5.3. Lipid Metabolism 

There was an evident activation of all lipid-related pathways very close to the parturition (2d 

prepartum). This is consistent with the consideration that mammary tissue is preparing to begin 

copious milk synthesis and secretion. The further upregulation of Lipid Metabolism pathways 

at 1d postpartum confirmed this. This is consistent with the fact that the mammary gland retains 

fat in late gestation and synthesizes great amounts of de novo fat in early lactation (d+3) (Krogh 

et al., 2017b; Hurley, 2014). Our results underscored that this transition is likely attributable to 

upregulation of many genes, including those involved in de novo fatty acid (FA) synthesis, FA 

activation and desaturation, cholesterol synthesis and ketone body utilization. 

FA de novo synthesis. We observed at 1d postpartum the upregulation of ACACB (acetyl-CoA 

carboxylase-β) [FC = 3.65]. ACC is a complex multifunctional enzyme system, catalyzing the 

carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. This 

result is consistent with expression profiles of genes involved in de novo FA synthesis of human 

mammary gland during secretory activation (Mohammad and Haymond, 2013), where a 

progressive increase of ACACB activity by day 4 postpartum was shown. In contrast, in mouse 

mammary gland ACACA was the only isoform with significant upregulation of expression 

during lactation, while ACACB expression did not differ between pregnancy and lactation (Han 

et al., 2010). ACACA and ACACB are distinct genes that respectively encode the isoenzymic 

ACC proteins ACCα and ACCβ. The ACACA gene is expressed at its highest levels in the 

lipogenic tissues and provides cytoplasmic malonyl-CoA for FA synthesis. The ACACB gene 
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is implicated in the regulation of β-oxidation of FA in the mitochondria (Abu-Elheiga et al., 

2000). FASN encodes another rate-controlling enzyme in lipogenesis that works in concert with 

ACACA activity. Both genes play a key role in regulating de novo FA synthesis in bovine 

mammary gland (Bionaz and Loor, 2008a). However, we did not detect differential expression 

in FASN or ACACA between late-gestation and early lactation (d+1). Whether this represents a 

unique feature of the swine mammary gland will have to be established in future experiments. 

FA desaturation genes. The primary enzyme involved in monounsaturated FA synthesis is 

stearoyl-CoA desaturase (SCD), an important enzyme in the mammary gland, which introduces 

a double bond in the Δ-9 position of myristoyl-, palmitoyl-, and stearoyl-CoA, primarily 

(Bionaz and Loor, 2008a). The expression of SCD was upregulated at 1d postpartum [FC = 

5.99], and appears to be central during milk fat synthesis at the onset of lactation in swine 

mammary gland. This result is consistent with the expression of desaturases in bovine during 

lactation (Kinsella, 1972; Bionaz and Loor, 2008a) but is contrary to data from human 

mammary epithelial cells where its expression decreased over the first 72 h and then gradually 

increased by day 21 of lactation (Mohammad and Haymond, 2013).  

The synthesis of very-long-chain FA is carried out by fatty acid desaturase 1 (FADS1) and 2 

(FADS2), which adds double bonds at the Δ-5 and Δ-6 position of PUFA (Xie and Innis, 2008). 

FADS1 is involved in the synthesis of the long-chain PUFA arachidonic acid, eicosapentaenoic 

acid and docosahexaenoic acid. The stage of lactation alters mammary FADS1 and FADS2 

expression in bovine (Bionaz and Loor, 2008a), rat (Rodriguez-Cruz et al., 2006; Rodriguez-

Cruz et al., 2011), and mouse, with a marked upregulation after parturition. In the latter, FADS1 

compared with FADS2 mRNA had a more pronounced and significant upregulation after 

parturition (Han et al., 2010). Yantao Lv et al. (Lv et al., 2015) suggested that from late-

pregnancy and throughout lactation the swine mammary gland participates in LC-PUFA 

synthesis by altering the expression of FADS1 and FADS2. The authors speculated that FADS1 

instead of FADS2-3 might play a major role in the biosynthesis of LC-PUFA in the lactating 

porcine mammary gland. Our results are in agreement with this consideration, since we found 

FADS1 gradually increased in the last 2 comparisons (2d prepartum and 1d postpartum) [FC = 

2.59 and 4.35], while FADS2 was significantly activated only in the postpartum period [FC = 

2.32]. 

Glycerol backbone activation. To synthesize triacylglycerides (TAG), both fatty acyl-CoAs 

and glycerol 3-phosphate must be readily available (Gonzalez-Baró et al., 2007). The major 
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steps in the pathway of TAG synthesis in mammary gland have been elucidated (West et al., 

1972; Lin et al., 1976; Harvatine et al., 2009). The activation of the glycerol carbon backbone, 

which is needed for further acylation, is the first and crucial step for further TAG assembly, and 

enzymes encoded by glycerol kinase (GK) and diacylglycerol kinase alpha (DGKA) play an 

important role. In particular, glycerol can enter the mammary epithelial cells from the plasma 

to be phosphorylated by GK (Mohammad and Haymond, 2013), and in the last comparison we 

detected the upregulation of GK  [FC = 2.41]. We also detected a moderate upregulation in 

expression of DGKA in the last 2 time comparisons [FC = 1.42 and 1.75]. DGKA plays an 

important role in the resynthesis of phosphatidylinositol and phosphorylation of diacylglycerol 

to phosphatidic acid. This indicates that the activation of the glycerol carbon backbone, which 

is needed for further acylation, is crucial during the onset of lactation in swine as in humans 

(Mohammad and Haymond, 2013). 

FA internalization and activation. Passive diffusion of FA across membranes plays a minor 

role compared with protein-mediated FA uptake and the flip-flop mechanism (Bionaz and Loor, 

2008a). The main proteins involved in FA uptake in non-ruminant cells include fatty acid 

translocase FAT/CD36 (CD36) and fatty acid transport proteins (FATP or SLC27A) (Doege 

and Stahl, 2006). In bovine, CD36 was associated with mammary fatty acid uptake from the 

blood after parturition (Bionaz and Loor, 2008a). Our results underscored a strong upregulation 

of CD36 [FC = 7.47], hence, confirming its pivotal role in swine mammary gland. The strong 

upregulation of ACSL6 (acyl-CoA synthetase long-chain family member 6) in the last 2 

comparisons [FC = 26.04 and 37.58] confirmed the importance of ACSL family member 

isoforms for FA activation during the onset of lactation in swine as in humans (Mohammad and 

Haymond, 2013) and bovine (Bionaz and Loor, 2008b). In fact internalized FAs must be 

esterified with CoA in the inner face of the plasma membrane via acyl-CoA (ASC) prior to 

participating in further metabolism (Bionaz and Loor, 2008a). In this regard, the upregulation 

of ACSL3 at 1d postpartum [FC = 5.62] is noteworthy given results reported by Yantao Lv et 

al. (Lv et al., 2015). They reported that ACSL3 is the most abundant isoform in the porcine 

mammary gland, in contrast to ACSL1 which is the main isoform in lactating bovine (Bionaz 

and Loor, 2008b) and human (Mohammad and Haymond, 2013) mammary cells. The authors 

speculated that in swine mammary gland ACSL3 channels LCFA mainly towards TAG 

synthesis during lactation. This consideration was based on the fact that in the rats ACSL3 

prefers C16-C20 unsaturated FA (Fujino et al., 1996), which are major constituents of FA in 
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sow milk (Lv et al., 2015). The downregulation of ACSL1 and ACSL5 at 2 days prepartum [FC 

= -1.44 and -1.84] seems to support the idea of ACSL3 being more important during lactation. 

Acyltransferases and TG assembly. From late pregnancy to onset of lactation, we detected the 

upregulation in the last 2 comparisons of a cluster of genes involved in the first and rate-limiting 

step in the TAG biosynthesis pathway, i.e. GPAT3, GPAT4 and AGPAT1 [FC = 2.04 , 2.09 and 

1.44; 3.13, 4.46 and 1,47 respectively]. The first committed step in TAG synthesis via the 

glycerol phosphate pathway is catalyzed by GPAT (glycerol-3-phosphate acyltransferase) 

enzymes, which reside in the endoplasmic reticulum (ER) and mitochondria (Takeuchi and 

Reue, 2009). These enzymes add fatty-acyl groups to the sn-1 position of glycerol-3-phosphate, 

leading to the production of monoacylglycerols (MAG) (Gonzalez-Baró et al., 2007). The 

second acylation step in the glycerol phosphate pathway is the conversion of lysophosphatidate 

to phosphatidate via AGPAT, which adds an acyl group to the sn-2 position of the glycerol 

backbone. (Takeuchi and Reue, 2009).  

Regarding specific isoforms uncovered in our results, GPAT3 is a gene with a controversial 

identity and current evidence suggests that it has both GPAT and AGPAT activities (Takeuchi 

and Reue, 2009). Similar to GPAT3, GPAT4 was also initially classified as an AGPAT6 based 

on high amino acid similarity to AGPAT1 and AGPAT2. After careful examination of enzyme 

activity, it was found instead to be a second ER-localized GPAT and renamed as GPAT4 

(Takeuchi and Reue, 2009). Nagle et al. (Nagle et al., 2008) revealed that, when expressed in 

cultured cells, GPAT4 can utilize a variety of substrates, including C12:0-, C16:0-, C18:0-, 

C18:1-, C18:2-, and C20:4-CoA substrates (Nagle et al., 2008). AGPAT1, which was 

upregulated in the last 2 time comparisons is a well-established AGPAT isoform, for which the 

enzyme activity has been validated (Leung, 2001) and with a preference for C12–16:0, C16:1, 

C18:2, and C18:3, followed by C18:0, C18:1, and C20:4, but with a poor activity for C20:0 and 

C24:0 (Takeuchi and Reue, 2009). Interestingly, AGPAT1 can also catalyze ATP-independent 

acyl-CoA and LPA (lysophosphatidic acid) synthesis from PA (phosphatidic acid), the reverse 

of the normal AGPAT reaction (Yamashita et al., 2001). This reversible activity suggested that 

it may be involved in the regulation of the levels of LPA and PA available to act as signaling 

molecules (Takeuchi and Reue, 2009). AGPAT1 (1-Acylglycerol-3-Phosphate O-

Acyltransferase 1) was also discovered to have a crucial role also during de novo synthesis of 

triacylglycerol in bovine mammary gland during lactation (Bionaz and Loor, 2008b).  
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Once synthesized and activated, FAs are esterified to glycerol-3-phosphate to produce TAG 

(Lv et al., 2015). Both GPAM and DGAT1 are responsible for the first and last step of 

esterification leading to TAG synthesis (Bionaz and Loor, 2008a). GPAM (glycerol-3-

phosphate acyltransferase, mitochondrial) is a well-known gene, mostly expressed in tissues 

with high lipogenic activity and plays a key role in phospholipid and TAG biosynthesis (Tomàs 

et al., 2003). DGAT1 (diacylglycerol acyltransferase 1) is well-characterized gene and catalyzes 

the esterification of the last FA to diacylglycerol leading to TAG synthesis. In the present study 

both GPAM and DGAT1 were upregulated only at 2d prepartum [FC = 1.91 and 1.31]. In the 

case of DGAT1, this result is not in agreement with studies in bovine and human, where its 

upregulation occurred postpartum (Bionaz and Loor, 2008a; Mohammad and Haymond, 2013). 

This may suggest that DGAT1, compared with other genes involved in TAG synthesis, is of 

minor importance in the overall process of milk fat synthesis in the pig. In a recent study, 

however, a western blot analysis of DGAT1 and other proteins in porcine mammary tissue 

confirmed its increase during lactation compared with late-pregnancy (Lv et al., 2015). Because 

our time frame of interest was around colostrogenesis, further protein expression and functional 

studies during these times would have to be conducted to clarify the importance of DGAT in 

colostrogenesis. Thus, we do not believe our findings contradict previous functional studies 

(Grisart et al., 2004) demonstrating a pivotal role for DGAT1 in milk TAG synthesis. The fact 

remains that DGAT1 is one of many proteins composing the TAG synthesis pathway (Coleman 

and Lee, 2004).  

Because they act in an interdependent manner to optimize lipid homeostasis in various tissues, 

it is currently believed that LPIN protein function and its role in glycerolipid synthesis are 

influenced by intricate functional interactions among the various LPIN family members (Csaki 

et al., 2014; Dwyer et al., 2012). Lv et al. (Lv et al., 2015) argued for a major role of LPIN1 in 

TAG synthesis in the porcine mammary gland during lactation. In the present study, the 

upregulation of LPIN1 at 1d postpartum [FC = 2.26] seems to confirm this argument. The 

LPIN1 isoform was reported to be the most abundant among LPIN isoforms in human 

(Mohammad and Haymond, 2013), mouse (Han et al., 2010), and bovine mammary tissue 

(Bionaz and Loor, 2008b), with a marked upregulation during lactation. 

Lipid droplet formation in milk. Milk fat globules are formed in the ER membrane via 

incorporation of newly-formed TAG, transported to the apical membrane, and eventually 

released during milk secretion (Keenan and Mather, 2006). Well-defined proteins involved in 
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these processes in mammary gland include butyrophilin (BTN1A1) and xanthine 

dehydrogenase (XDH) (Bionaz and Loor, 2008a), having a function as a structural protein in 

milk fat droplets in the lactating mammary gland (Murakami et al., 2014). Furthermore, it is 

known that perilipins are a family of proteins localized in the periphery of intracellular lipid 

droplets that are essential for droplet formation (Tansey et al., 2004). Our data is consistent with 

this evidence and support a significant role of all BTN1A1, XDH and PLIN5 genes in swine 

mammary lipid droplet formation. In fact, in the last 2 time comparisons we detected a strong 

upregulation of BTN1A1 [FC = 90.49 and 202.51] and at 1d postpartum we detected a marked 

upregulation of XDH [FC = 17.24] and PLIN5 [FC = 21.42]. This is in agreement with a recent 

study showing that fat is taken up in substantial amounts by sow mammary glands in late 

gestation (Krogh et al., 2017b). 

Cholesterol synthesis genes. The shift of nutrients from body stores towards the mammary 

gland for milk production requires not only the adaptation of glucose and lipid metabolism to 

the lactating state, but also cholesterol metabolism in particular during early lactation (Kessler 

et al., 2014). In our results the upregulation of HMGCS1, FAXDC2, NSDHL at 1d postpartum 

[FC = 7.63; 4.69 and; 1.50] seemed to confirm this evidence also in swine mammary gland. In 

particular HMGCS1, which is important for the regulation of cholesterol synthesis (Rikitake et 

al., 2001), was markedly upregulated during early lactation compared with late pregnancy in 

the bovine mammary gland (Kessler et al., 2014).  

Utilization of ketone bodies. On day -2 and day 1, we detected moderate upregulation of BDH 

(3-hydroxybutyrate dehydrogenase), encoding a protein catalyzing the initial steps of BHBA 

utilization in mitochondria (Robinson and Williamson, 1980). In humans, cytosolic type BDH2 

is involved in the cytosolic utilization of ketone bodies, which can subsequently enter 

mitochondria and the tricarboxylic acid cycle (Yang et al., 2013). In ruminants, previous studies 

showed that the mammary gland takes up large amounts of BHBA and concluded that the use 

of BHBA (as 4-carbon units) by mammary cells is primarily for de novo FA synthesis 

(Palmquist et al., 1969; Bionaz and Loor, 2008a). The moderate upregulation of BDH2 in the 

last 2 time comparisons [FC = 1.68; 1.93] suggested that ketone bodies likely are an energy 

source also for the sow mammary gland. 

Ceramide-synthesis genes in mammary gland. There was moderate upregulation of SGMS1 

(sphingomyelin synthase 1) in the prepartum period [FC = 1.42] and higher upregulation of 

SGMS2 (sphingomyelin synthase 2) in the postpartum period [FC = 4.37], and we found a 
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concomitant downregulation of SGMS1 [FC = -1.35]. Sphingomyelin synthases synthesize 

sphingomyelin through transfer of the phosphatidyl head group in phosphatidylcholine to the 

primary hydroxyl group of ceramide. Ceramide, which is involved in cell signaling, cell cycle, 

and regulation of protein transport from ER to Golgi, is one of the most-studied sphingolipids 

in nature (Jazwinski and Conzelmann, 2002). Sphingomyelin synthesis from ceramide is 

considered an important step because sphingomyelin constitutes about 25% of the total 

phospholipids in dairy products, having highly bioactive properties and is considered to be 

functional in food (Palmquist, 2006b). The upregulation of SMPD1 (sphingomyelin 

phosphodiesterase 1) [FC = 1.67] and the simultaneously downregulation of CERS1 (Ceramide 

Synthase 1) [FC = -2.12] at 1d postpartum appears to have a biologic role in the overall process 

of sphingomyelin metabolism. SMPD1 is involved in the conversion of sphingomyelin to 

ceramide, whereas CERS1 catalyzes the synthesis of ceramide. Further protein expression and 

functional studies during the entire lactation should be conducted to clarify the role of 

sphingolipids with signaling roles and the role of ceramide in swine mammary gland. 

The marked upregulation of CYP4A21 [FC = 568.37], a member of the CYP4A subfamily 

discovered in pig (Lundell et al., 2001), is noteworthy because the protein possesses 

taurochenodeoxycholic acid 6α-hydroxylase activity but does not metabolise lauric acid, a 

common substrate for other CYP4As (Lundell et al., 2001). The function of CYP4A in vivo is 

not well understood but CYP4As are known for hydroxylating of a series of fatty acids, 

eicosanoids and prostaglandins (PG) (Simpson, 1997; Capdevila et al., 1999; Omura, 1999). 

The activity of CYP4A21 is still uncharacterized in mammary gland. CYP4A21 is believed to 

be responsible for formation of hyocholic acid, a bile acid typically found in porcine (Lundell, 

2004). Further analysis is required to investigate the role of this gene during the onset of 

lactation in swine mammary gland.  

In summary, our data showed an abrupt increase of all pathways involved in the synthesis of 

main milk components. Hence, the upregulation at 1d postpartum of OXTR (oxytocin receptor) 

[FC = 3.17] (a G protein-coupled receptor) would help guarantee ejection of these components 

from the mammary gland (Kimura et al., 1992). 

 

III - 5.4. Transcription factors 

The first step of gene expression and the primary step at which gene expression is controlled is 

transcription. This is accomplished through the recruitment of several transcription factors, 
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which have the ability to bind to certain target-sequences primarily located in the 5’ upstream 

regulatory region of the genes, and promote or suppress gene transcription according to the 

stimuli (Laliotis et al., 2010). Considering those transcription regulators in IPA findings that 

overlap in the last 2 time comparisons (p-value cutoff ≤ 0.01 and activation z-score ≥ ± 2) the 

results supported the suggestion that SREBP1 and XBP1 are pivotal in the transition from 

colostrogenesis to lactogenesis in swine mammary gland. They likely act on regulation of lipid 

synthesis (Anderson et al., 2007) and morphological mammary development (Davis et al., 

2016), respectively. 

Regulation of lipid biosynthesis. The function of SREBP1 (sterol regulatory element-binding 

protein 1) is well-established and it is a TF that plays a central role in the regulation of hepatic 

cholesterol biosynthesis and FA metabolism, particularly the biosynthesis of fat (Desvergne et 

al., 2006; Goldstein et al., 2006). Our results show that SREBP1 is also important in the 

mammary gland for cholesterol biosynthesis and this is consistent with real-time PCR 

measurements that confirmed the upregulation of SREBP1 during the transition from pregnancy 

to lactation in murine mammary gland (Rudolph et al., 2007). In non-ruminants, SREBP1 

resides as an inactive precursor on the endoplasmic reticulum membrane and is transported to 

the Golgi for proteolytic cleavage (i.e., activation) prior to entering the nucleus where it 

activates expression of sterol response element (SRE)-containing genes (Bionaz and Loor, 

2008a). The transport step to the Golgi is blocked by sterols via the sterol-sensing protein SCAP 

(SREBP cleavage activating protein), and its expression was modestly upregulated in the last 

comparison [FC = 1.26]. Release of SREBP1-SCAP is essential for the movement from the ER 

to the Golgi, acting as gate keeper for movement of inactive SREBP1.  

Insulin induced gene (INSIG) 1 and 2 are proteins that interact with SCAP in an oxysterol-

dependent and independent fashion (in non-ruminants) and regulate the responsiveness of 

SREBP1 and 2 processing via SCAP, thus, altering rates of lipogenesis and cholesterogenesis. 

The precise role of INSIG1, strongly upregulated in our last comparison [FC = 13.22], is 

controversial. In fact, decreased SREBP activity as a consequence of increased INSIG1 has 

been observed in liver when INSIG1 is overexpressed (Engelking et al., 2004), but upregulation 

of INSIG1 was detected during lactation and positively correlated with the ratio of 

synthesized/imported FA in bovine mammary gland (Bionaz and Loor, 2008a).  

Our data support a need of INSIG1 in controlling the induction of gene expression by SREBP. 

Therefore, INSIG1 could play a central role in orchestrating lipid metabolism also in swine 
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mammary tissue during lactation. In this regard, the predicted upregulation of PPARG 

expression at 1d postpartum (known to be involved in regulation of lipid synthesis in goat and 

bovine mammary cells (Shi et al., 2016c; Shi et al., 2013; Kadegowda et al., 2009; Bionaz and 

Loor, 2008a) is noteworthy [PPARGC1B z-score = 2.06]. A potential role of this nuclear 

receptor in milk fat synthesis was already postulated in particular in bovine mammary gland, 

where INSIG1 was demonstrated to be a PPARG responsive gene, suggesting that PPARG in 

mammary tissue could serve as regulator of SREBP activity (Bionaz and Loor, 2008a). PPARG 

could represent an important control point of milk fat synthesis, in particular in triacylglycerol 

synthesis and milk secretion in pig as well as in goat and bovine (Shi et al., 2013; Kadegowda 

et al., 2009), acting indirectly on SREBP1 protein activity through regulation of the expression 

of insulin-induced gene 1 (INSIG1) and directly on SREBP1. 

Regulation of morphological mammary development. Colostrum and milk synthesis occurs in 

alveolar structures composed of a single layer of MEC encircling a lumen where milk is 

secreted (Anderson et al., 2007). In order to become fully functional, MEC acquire a number 

of cellular characteristics during late pregnancy including the development of an elaborate 

endoplasmic reticulum (ER) system (Akers et al., 1981), which is required for the synthesis of 

secreted proteins but is also the site where fatty acids are assembled into TAG and 

phospholipids (Fagone and Jackowski, 2009). The coordination of synthesis and export of 

products in murine mammary epithelial cells is orchestrated in part by the transcription factor 

X-box binding protein 1 (XBP1) (Kim et al., 2016), which has multiple functions. Briefly, it 

promotes ER biogenesis (Sriburi et al., 2007) and is a component of a highly-conserved 

signaling cascade responsible for restoring homeostasis when the ER is confronted with various 

stresses, including increased protein synthesis and secretion (Hetz, 2012; Moore and Hollien, 

2012). XBP1 is also implicated as a positive regulator of both lipogenesis and VLDL (very low 

density lipoprotein) secretion in hepatocytes (Lee et al., 2008; Wang et al., 2012a). Recently, 

in murine, it was shown that XBP1 is required for MEC population expansion during lactation 

and its ability to develop an elaborate endoplasmic reticulum compartment (Davis et al., 2016).  

All the above evidence is consistent with the suggestion that XBP1 may be indispensable for 

morphologically mammary development, colostrum and milk synthesis and secretion during 

late-pregnancy and the onset of lactation in pig. In particular, focusing on the upregulated genes 

involved in protein processing in endoplasmic reticulum that were detected in the last two 

comparisons, the significant upregulation of PDIA4 [FC = 2.42 and 3.11], PDIA3 [FC = 1.60 
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and 2.15], PDIA6 [FC = 1.49 and 2.05] and CALR (calreticulin) [FC = 1.63 and 2.11] is 

noteworthy. PDIA4, PDIA3 and PDIA6 are genes that encode for specific members of the 

disulfide isomerase (PDI) family of endoplasmic reticulum (ER) proteins that catalyze protein 

folding and thiol-disulfide interchange reactions. Calreticulin is a multifunctional protein that 

acts as a major Ca(2+)-binding (storage) protein in the lumen of the endoplasmic reticulum. In 

MEC, the role of ER-resident proteins on the folding and the retention of milk proteins is not 

well defined. However, calreticulin and PDI have been detected in rat and goat lactating MEC, 

leading the authors to suggest that these proteins could be involved in the formation of lipid 

droplets, raising questions about a possible link between the enzymes involved in protein and 

lipid synthesis (Ghosal et al., 1994). 

Other upregulated Transcription Regulators. At 1d postpartum, we detected a marked 

upregulation of IRF7 [z-score = 4.69], TP53 [z-score = 4.25], NUPR1 [z-score = 4.10] and 

NFATC2 [z-score = 4.09] together with XBP1 and SREBP1 which had the highest z-score 

values. IRF7 encodes interferon regulatory factor 7, a member of the interferon regulatory 

transcription factor (IRF) family, it is a key transcriptional regulator of type I interferon (IFN) 

dependent immune responses and plays a critical role in the innate immune response against 

DNA and RNA viruses (Ning et al., 2011). It regulates the transcription of type I IFN genes 

(IFN-α and IFN-β) and IFN-stimulated genes (ISG), which are markedly upregulated [ISG15, 

FC = 2.95], by binding to an interferon-stimulated response element (ISRE) in their promoters. 

TP53 (Tumor Protein P53) is a tumor suppressor implicated in several types of human tumors, 

and it functions both as a gene-specific transcription factor as well as a specific inhibitor of the 

transcription of certain genes (Shaw, 1996). Its tumor suppressor activity is typically ascribed 

to its role as a transcription factor regulating expression of genes involved in control of cell 

cycle, cellular senescence, and apoptosis (Vousden and Prives, 2009) but recently Munne et al. 

(Munne et al., 2014) suggested and demonstrated a role for TP53 in the epithelial-to-

mesenchymal transition (EMT) and differentiation of mammary epithelia. NUPR1 is a nuclear 

protein transcriptional regulator. Together with other TR, Zhou et al. (Zhou et al., 2014) 

reported a high expression of NUPR1 during lactation compared with pregnancy. NUPR1 is 

involved in negative regulation of the cell cycle (Sambasivan et al., 2009), which could explain 

why cell cycle-related genes are more active in pregnancy. NFATC2 (nuclear factor of activated 

t-cells 2) is a member of the nuclear factor of activated T cells (NFAT) family. Most of the 

work on NFAT proteins has been related to immune cell activation and its mediators, such as 
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cytokines (Rao et al., 1997). The product of this gene is a DNA-binding protein with a REL-

homology region (RHR) and an NFAT-homology region (NHR). This protein is present in the 

cytosol and only translocated to the nucleus upon T cell receptor (TCR) stimulation, where it 

becomes a member of the nuclear factors of activated T cells transcription complex. This 

complex plays a central role in inducing gene transcription during the immune response 

(Kuklina and Shirshev, 2001). 

 

III - 6. Conclusion 

The transcriptome changes greatly between 6 and 2 days prepartum and these changes are 

highly likely to be involved in coordinating the synthesis of colostrum and main milk 

components (i.e. protein, fat, lactose and antimicrobial factors) as revealed by influenced 

pathways. The lipid metabolism pathway changes greatly and some of those adaptations are 

controlled at least in part via SREBP1 and XBP1, acting on regulation of lipid synthesis and 

morphological development of the mammary gland. Other transcription regulators including 

IRF7, TR53, NUPR1 and NFATC2 acting across a wide number of pathways become important 

at the onset of lactation. Further research will help confirm the functional relevance of the 

pathways uncovered, and how they influence the transition from colostrum to mature milk 

during a stage when slight abnormalities may potentially threaten piglet survival. Clearly, milk 

synthesis requires a complexity of factors beyond transcription of the major proteins involved 

in the synthesis and secretion of protein, fat, and lactose. Holistically, milk synthesis is the 

product of complex interactions among several tissues and organs that only an integrative 

systems-biology approach may help elucidate. 
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III - 7. Figures and tables 

Figure III-1. Total number of DEGs due to time resulting from DE analysis of RNASeq data 

on swine mammary gland from late pregnancy to farrowing (FDR and p-value ≤ 0.05). 
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Figure III-2. KEGG main categories resulting from the DIA analysis on DEGs obtained by DE 

analysis of RNASeq data on swine mammary gland from late pregnancy to farrowing (FDR 

and p-value ≤ 0.05). For each time comparison, the columns represent the effect (impact) and 

flux responses. The blue bars represent the effect value (0 to 150), and the flux columns 

represent negative (−) and positive (+) flux (−150 to +150) based on the direction of the effect. 

The negative flux (green bars) indicates a downregulation, while the positive flux (red bars) 

indicates an upregulation. 
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Figure III-3. KEGG 'Lipid Metabolism' pathways resulting from the DIA analysis on DEGs 

obtained by DE analysis of RNASeq data on swine mammary gland from late pregnancy to 

farrowing (FDR and p-value ≤ 0.05). For each time comparison, the columns represent the 

effect (impact) and flux responses. The blue bars represent the effect value (0 to 300), and the 

flux columns represent negative (−) and positive (+) flux (−300 to +300) based on the direction 

of the effect. The negative flux (green bars) indicates a downregulation, while the positive flux 

(red bars) indicates an upregulation. 
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Figure III-4. KEGG ’Endocrine system’ pathways resulting from the DIA analysis on DEGs 

obtained by DE analysis of RNASeq data on swine mammary gland from late pregnancy to 

farrowing (FDR and p-value ≤ 0.05). For each time comparison, the columns represent the 

effect (impact) and flux responses. The blue bars represent the effect value (0 to 200), and the 

flux columns represent negative (−) and positive (+) flux (−200 to +200) based on the direction 

of the effect. The negative flux (green bars) indicates a downregulation, while the positive flux 

(red bars) indicates an upregulation. 

 

Figure III-5. Top 10 upregulated KEGG pathways in -2d vs -14 d comparison resulting from 

the DIA analysis on DEGs obtained by DE analysis of RNASeq data on swine mammary gland 

from late pregnancy to farrowing (FDR and p-value ≤ 0.05). The columns represent the effect 

(impact) and flux responses. The blue bars represent the effect value (0 to 150) and red the bars 

represent the flux (the direction of the effect). 
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Figure III-6. Top 10 upregulated KEGG pathways in +1d vs -14 d comparison resulting from 

the DIA analysis on DEGs obtained by DE analysis of RNASeq data on swine mammary gland 

from late pregnancy to farrowing (FDR and p-value ≤ 0.05). The columns represent the effect 

(impact) and flux responses. The blue bars represent the effect value (0 to 150) and red the bars 

represent the flux (the direction of the effect). 

 

 

Table III-1. Summary of RNA extraction and quality check for all the samples. 

 

Sample 

ID 

Time days to 

parturition 

Mass 

(mg) 

RNA 

Concentration 

(ng/ul)  

RIN 

1 -14 9.3 473.53 6.7 

2 -14 17.7 757.92 6.7 

3 -14 12.2 85.72 6.3 

1 -10 19.6 977.97 8.6 

2 -10 13.8 1007.79 7.7 

3 -10 15.2 409.14 6.7 

1 -6 26.6 979.99 8.2 

2 -6 27.3 1750.72 8.2 

3 -6 29.3 852.2 8.1 

1 -2 18.4 829.75 8.7 

2 -2 15.7 784.09 8.7 

3 -2 28.2 830.40 9.3 

1 1 17.0 1056.95 9.4 

2 1 23.6 1207.2 9.0 

3 1 31.7 809.31 9.1 
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Table III-2. Quantitative real time PCR (qPCR) validation of sequencing (Seq) results. For each 

gene the overall false discovery rate (FDR) was reported, together with the comparison specific 

fold-change (FC) and P-value, generated applying the same statistical model to either qPCR or 

Seq data. 

 

Table III-3. RNA sequencing and alignment for all the samples. 

 

 

 

 

   -14 vs -2 time comparison  -14 vs +1 time comparison 

Target FDR  FC P-value  FC P-value 

CSN2        

qPCR <.0001  51.9 <.0001  254.8 <.0001 

Seq 0.001  31.0 0.003  33.5 <.0001 

LALBA        

qPCR <.0001  156.1 <.0001  8321.9 <.0001 

Seq 0.003  128.5 0.03  1275.5 0.001 

LTF        

qPCR <.0001  1.5 0.02  3.4 <.0001 

Seq 0.001  1.7 0.10  3.9 <.0001 

PAEP        

qPCR 0.0001  2.2 0.0005  3.4 <.0001 

Seq 0.004  1.8 0.01  1.9 0.001 

 

Sample 

ID

Time days to 

parturition
Total Reads

Total Mapped 

Reads

Percent 

Mapped

Uniquely 

mapped Reads

Percent 

uniquely 

mapped

Reads mapped 

to annotated 

exons

1 -14 30977882 28530182 92.1% 26049171 91.3% 18924790

2 -14 31749008 29241577 92.1% 26662181 91.2% 19292238

3 -14 28119604 25931870 92.2% 23632716 91.1% 16862026

1 -10 31167527 28730778 92.2% 26202356 91.2% 19238556

2 -10 27627300 25520346 92.4% 23356330 91.5% 17280281

3 -10 27913828 25648864 91.9% 23372282 91.1% 17048788

1 -6 28389469 26134316 92.1% 23946131 91.6% 17726719

2 -6 28896592 26677836 92.3% 24500842 91.8% 18261982

3 -6 29503599 27221174 92.3% 24889449 91.4% 18274050

1 -2 29505106 27138019 92.0% 25011949 92.2% 19222359

2 -2 30207980 27794713 92.0% 25783333 92.8% 19952918

3 -2 21095245 19535089 92.6% 17944543 91.9% 13459054

1 1 15360190 13983211 91.0% 13130206 93.9% 10782343

2 1 17917675 16454059 91.8% 15185453 92.3% 11416874

3 1 24317858 22265447 91.6% 20539061 92.2% 15744454
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Table III-4. Top 10 upregulated genes in both and specific time comparisons (FDR and p-value 

≤ 0.05). 

 

 

 

Table III-5. Top ten upregulated genes in -2vs-14 comparison. 

 

 

 

 

 

 

 

 

Status 
+1vs-14  

time comparison 

-2vs-14  

time comparison 

both  

time comparison 

upregulated WAP, SAA2, LBP, CP 

CYP1A1, 

LOC100524679, 

CSN2, ACSL6 

HP, LALBA, CSN1S2, 

BTN1A1, BTN1A1-like 

LOC100522145 

 

Gene symbol Entrez gene ID  FDR FC P-value 

CSN1S2 445515 0.000 629.572 0.002 

LALBA 397647 0.003 128.511 0.032 

taurochenodeoxycholic 6 alpha-

hydroxylase-like 
100522145 0.002 95.634 0.019 

butyrophilin subfamily 1 member 

A1 
100153328 0.007 90.488 0.023 

butyrophilin subfamily 1 member 

A1-like 
100626139 0.007 90.488 0.023 

CYP1A1 403103 0.005 59.108 0.011 

ovostatin homolog 2-like 100524679 0.006 59.017 0.015 

CSN2 404088 0.001 31.014 0.003 

HP 397061 0.000 29.272 0.001 

ACSL6 100522126 0.012 26.040 0.031 
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Table III-6. Summary of upregulated genes of most recurrent subcategory in both and specific 

comparisons. 

 

KEGG  

Category 
Status 

Genes in  

+1vs-14  

comparison 

Genes in  

-2vs-14 comparison 

Genes in  

both  

comparison 

Lipid 

metabolism 
upregulated 

ALDH2, HMGCS1, 

HSD11B1, SCD, ACSL3, 

FAXDC2, SGMS2, SC5D, 

403334, ACACB, SQLE, 

MSMO1, CYP2J2, CERS4, 

CYP2J34, LCLAT1, 

DHCR24, 100233182, 

PLPP3, FADS2, 100170845, 

100517533, ACAT2, MGLL, 

CYP2D25, TM7SF2, 

ACADM, ARSA, PNPLA2, 

GLA, SMPD1, PTGS1, 

LPCAT3, GPCPD1, 

PAFAH2, ACADS, NSDHL, 

PLA2G12A, KDSR, ECI2, 

GBA2, COMT, 100515577 

CYP1A1, 

100157065, GPAM, 

GPD2, SGMS1, 

CDIPT, DGAT1 

GGT1, 397097, FADS1, 

AGPAT1, NEU1, GPAT4, 

CEPT1, HSD17B7, CDS2, 

PLA2G16, 100522126, 

100522145, 100522692, 

GPAT3, 100625138, 

100625332, 100738292 

Endocrine 

system 
upregulated CYP1A1, PYGB 

396835, CD14, 

FXYD2, FOS, HK2, 

RCAN1, SH2B2, 

PFKFB2, STAT3, 

ACACB, PHKG1, 

ITGB3, HSPA5, 

OXTR, CYP2J2, 

PLN, PLCD3, 

SEC11C, CYP2J34, 

HSP90B1, MYL9, 

CPEB4, 100514493, 

ITGA11, RRAS, 

CREB3L2, CPEB3, 

CFL2, NFATC2, 

CTSB, SEC61G, 

SRP54, SPCS3, 

PRKCI, ITGA2, 

PLCD1, JUN, 

DIAPH1, SEC63, 

PRKAB2, SP1, 

BCAR1, B2M, 

106504143, 

PRKAB1, 

PIKFYVE, KAT2B, 

CREB3, PRKCD, 

STAT1, RYR2, 

CTSV, KCNJ2, NOS3, 

PCK2, CSN2, FOXO3, 

MTOR, NCOA2, SPCS1, 

SRC, SEC61A1, 

HSD17B7, PDIA3, 

MAPK14, CALR, 

SEC61B, RPTOR, SRPRA, 

CREB3L1, CANX, VAV1, 

100522176, PDIA4, 

GNA13, 100523015, 

100523202, EEF2K, 

MRAS 
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Table III-7. Summary Transcription Regulators (TRs) in both and specific comparisons. 

 

  

Status 

TRs in  

+1vs-14  

comparison 

TRs in  

-2vs-14 comparison 

TRs in  

both  

comparison 

activated 

ATF4, CDKN2A, CEBPA, 

CREB1, CREM, E2F6, 

ECSIT, EPAS1, FOXO3, 

GATA1, HIF1A, ID3, IRF1, 

IRF3, IRF5, IRF7, KDM5B, 

MEF2D, MXI1, NFATC2, 

NFKB1, NFKBIA, NUPR1, 

PDX1, PPARGC1B, RB1, 

RBL1, RELA, SMARCA4, 

SMARCB1, SREBF2, 

STAT1, STAT2, TCF3, 

TCF7L2, TOB1, TP53 

ATF6 
SREBF1 

XBP1 
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Chapter IV - PIA (PATHWAYS INTERACTION ANALYSIS): AN R TOOL FOR 

ANALYSING AND INTERPRETING HIGH-THROUGHPUT DATA  

 

Abstract 

Increasing quantitative data generated from genomic and transcriptomic analysis requires 

integrative strategies to solve the challenge of data mining. The use of tools for pathway 

analysis or functional enrichment is de facto standard for the secondary analysis of high-

throughput experiments. Nevertheless, the majority of these tools perform the analysis within 

a single pathway, not providing an integrated summary in terms of networks or interactions 

among more pathways of interest and related groups of genes.  

Here we present Pathways Interaction Analysis (PIA), an R package that classifies functionally 

related genes taking into account a network of both upstream and downstream pathways in 

interaction. The network-based result helps to interpret functional profiles of cluster of genes 

underlying complex biological processes.  

The suite has no species constraints, and is functional to analyse genomic or transcriptomic 

outcomes. 
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Contents of chapter  

IV - 1. Introduction 

Thanks to advancements in high-throughput techniques and simultaneous reduction in the 

associated costs, large scale ‘omics’ studies are now common, enabling the generation of a huge 

amount of biological data (Joyce and Palsson, 2006) and posing the challenge of data mining 

rather than data production to researchers. Typically, a key result of genomic or transcriptomic 

analysis (e.g. genome-wide association study, runs of homozygosity, selection signature, 

expression profile from microarray or RNA sequencing technologies etc…) is a long list of 

statistically significant genes that contribute to the phenotypes or physiological conditions of 

interest. The subsequent step is to extract meaning from this list in order to provide insights into 

the underlying biology of the state under study (Khatri et al., 2012b).  

 

IV - 1.1. Studying omic data using pathways  

To reduce the complexity of omic data mining, one common approach is to simplify the analysis 

by grouping long lists of individual genes into smaller sets of related ones sharing the same 

biological processes or molecular functions. This method, known as ‘pathway analysis’ (Curtis 

et al., 2005), has become popular during the last few years (Rk et al., 2005) and is de facto 

standard for the secondary analysis of high-throughput experiments (Khatri and Drăghici, 

2005b).  

This approach is driven by the increasing availability of free accessible repositories based on 

hierarchical and functional classification of terms (Ashburner et al., 2000). In this regard, many 

sources of pathway and functional information, which can be either generic or species-specific, 

are now available (Khatri and Drăghici, 2005a). These knowledge databases include Kyoto 

Encyclopedia of Genes and Genomes (KEGG) that represents a prominent reference repository 

constantly updated (Kanehisa et al., 2017). KEGG is a bioinformatics resource that annotates 

genes to specific pathways and helps the understanding of organism genome information 

(Kanehisa et al., 2017). At the same time, a large number of tools for pathway analysis have 

been developed (Berg et al., 2009b; Khatri et al., 2012a). Nevertheless, the majority of them 

perform the functional enrichment analysis within a single item (i.e. pathway) (Curtis et al., 

2005) not providing integrated information in terms of networks or interactions among more 

pathways of interest and related groups of genes (Cirillo et al., 2017).  
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IV - 1.2. Statistical methods for pathway enrichment analysis 

Particularly in the context of gene expression data mining, an interesting step is to ask if there 

are any pathways or classes that are significantly over-represented (over-representation 

analysis) (Khatri et al., 2012a). This involves comparing the list of identified genes to that of 

those from a specific pathway or classification with the aim to identify if there are more matches 

than would be expected by chance. Several statistical methods can be used for this purpose 

(Draghici et al., 2003; Beissbarth and Speed, 2004; Curtis et al., 2005), hypergeometric 

distribution test (one-sided Fisher’s exact test) is one of the most common (Tavazoie et al., 

1999; Curtis et al., 2005; Simoes and Emmert-Streib, 2012). The result is a p-value describing 

the likelihood of obtaining the observed result that can be corrected for multiple tests (Draghici 

et al., 2003).  

 

IV - 2. Aim of the study 

Here, PIA (Pathway Interaction Analysis) package is introduced. PIA is a suite of scripts built 

in R (Ihaka and Gentleman, 1996b), that starting from a list of significant genes and main 

pathways of interest, highlights networks of genes in interactions at multiple levels 

(upstream/downstream pathway levels) based on information available on KEGG (Kanehisa et 

al., 2017). The results help to interpret high-throughput data and identify candidate genes for 

function that can influence multiple and complex biological processes. We believe that PIA 

data visualization, in the form of interactive pathway diagrams and gene-pathway biological 

interactions such as genetic networks, enhances interpretation of scientific data, increases 

understanding the conclusions drawn, and promotes discussion and follow-up research 

questions. 

 

IV - 3. Methods 

The package is specifically designed for the data mining of post-genomic and transcriptomic 

analyses and can handle data obtained from many species. The analysis is completely based on 

information available on KEGG databases (Kanehisa et al., 2017).  

The rationale of interaction analysis performed by PIA is to highlight candidate genes for 

function, taking into account multiple levels of upstream and downstream pathways connected 

to a set of main pathways of interest (first-degree interaction pathways – FDI or 1DI) known to 

be involved with the phenotype/condition under study. A list of genes is ordered into an 
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interaction network of multiple level pathways created by PIA based on KEGG information 

and starting from the FDI pathways chosen by the user to perform the investigation. More 

specifically, PIA uncovers the relations among the pathways at the FDI level, then it selects the 

upstream or downstream pathways in interaction (from 2 - second degree interaction, 2DI - to 

n degree of interaction) finally, once the backbone of pathways in interaction is created, PIA 

pin-points the genes in the multiple levels investigated and provides a pathways/genes-based 

network visualization. 

 

IV - 3.2. Package installation 

This thesis focuses on PIA v.1.1.1. This and further versions of the package can be easily 

installed in any R session using the install.packages(‘PIA’) command. Once installed, the 

package is loaded in the R environment with the library(‘PIA’) command. The tool requires 

several R libraries automatically uploaded along with the package. 

 

IV - 3.3. Package functionality 

PIA package functions could be divided in two different steps: data preparation and data 

analyses (Figure IV-1). The first step helps to obtain all parameters and information needed to 

run the analysis and to prepare a properly formatted list of genes and FDI pathways of interest. 

The second step provides enrichment analysis, pathway interaction analysis and results 

visualization. 

Since PIA interrogates KEGG databases, an internet connection is required to run the functions. 

Trial datasets are downloadable along with the package and can be stored in the working 

directory using the command pia.example()command. 

 

IV - 3.4. Data preparation 

PIA package requires the entrez gene identifiers (ID) to work. In fact, only the genes with 

entrez ID have a corresponding item in KEGG databases. To enhance user experience, 

specific functions based on biomaRt package (Durinck et al., 2009) are provided to retrieve 

the correct entrez annotation: pia.dataPreparation() and 

pia.exprdataPreparation(). The two functions prepare the dataset with the correct 

format for PIA analysis on a simple gene list or as gene expression data. In particular, they 

allow us to get the PIA requested gene ID along with a gene symbol.  
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The biomaRt organism code is needed to run proper data preparation functions and is 

obtainable with pia.biomartSpecies() command. 

 

# Look for a specific organism code for biomaRt annotation, matching a search 

string  

> list <- pia.biomartSpecies(string = "cow") 

The list of available species matched your string was created! 

Remember to use the correct organism code for relative PIA functions. 

> head(list) 

organism_code   description   version 

1   btaurus_gene_ensembl   Cow genes (UMD3.1)   UMD3.1 

> biomart.species.bos <- as.character(list[1,1]) #btaurus_gene_ensembl 

> biomart.species.bos 

[1] btaurus_gene_ensembl 

# Example of gene list preparation from dataset with ensembl id  

# Copy the example data file ‘ensembl_genelist.txt’ in your current working 

directory 

> pia.example() 

> genelist <- read.table("ensembl_genelist.txt", header = FALSE)  

> head(genelist)  

V1  

1   ENSBTAG00000000039  

2   ENSBTAG00000000040  

3   ENSBTAG00000000042  

4   ENSBTAG00000000044  

5   ENSBTAG00000001521  

6   ENSBTAG00000001522 

> genelist.converted <- pia.dataPreparation(in.file = 

"ensembl_genelist.txt", gene_id = "ensembl", biomart.species = 

biomart.species.bos) 

Input file imported!  

BiomaRt species correct! 

Gene id correct! 

Convertion from ensembl ID to entrez ID ...  

DONE 

n. 36 of 47 genes have corresponding gene in KEGG database. 

Gene list exported!  
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The use of data preparation functions is recommended but not mandatory. In fact, it must 

be emphasized how their correct performance depends on the availability of biomaRt data 

access for a specific species of interest and of its correct ID annotation. For this reason, we 

strongly suggest to double-check all-possible gene annotations, according to the data format 

guidelines, as shown below.  

 

IV - 3.4.1. Gene list dataset (post-genomic analysis dataset) 

PIA requires a specific input format dataset. The list of genes of interest must be provided 

as ‘.txt’ file, containing three columns labelled (as shown in trial dataset), and stored in a 

working directory. 

 

# Copy the example data file 'data.txt' in your current working directory 

> pia.example() 

> genelist <- read.table("data.txt", header=TRUE)  

> head(genelist) 

ensembl_gene_id   entrezgene   external_gene_name  

1   ENSBTAG00000000039   505662   SIRT7  

2   ENSBTAG00000000040   515219   MAFG  

3   ENSBTAG00000000042   539606   PYCR1 

4   ENSBTAG00000000044   617922   MYADML2  

5   ENSBTAG00000001521   616871   UQCRB  

6   ENSBTAG00000001522   526138   MTERF3 

 

IV - 3.4.2. Gene expression dataset 

Also for the expression dataset, PIA requires a specific input format. The list of differentially 

expressed genes (DEG) of interest, with the relative fold change (FC) and p-value, must be 

provided as ‘.txt’ file, containing five columns (as shown in trial dataset), and stored in a 

working directory. 

 

# Copy the example data file 'exprdata.txt' in your current working directory 

> pia.example() 

> expr.genelist <- read.table("exprdata.txt", header=TRUE)  

> head(expr.genelist) 

ensembl_gene_id   FC   pvalue    entrezgene    external_gene_name 

1   ENSSSCG00000000002   -4.992506 0.00002740   NA    GTSE1 
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2   ENSSSCG00000000003   -1.230589   0.28308054    100518372    TTC38 

3   ENSSSCG00000000005   -1.028827   0.88291084   100518729    CDPF1 

4   ENSSSCG00000000006    3.737968    0.01211484    397239    PPARA 

5   ENSSSCG00000000007    1.060006    0.64321216    100521087    TRMU 

6   ENSSSCG00000000010    1.319015    0.31261992     100519144    FBLN1 

 

IV - 3.4.3. Pathways of interest 

The FDI pathways of interest, coded as KEGG path ID, are mandatory to run the core PIA 

functions. 

The pathways are chosen by the user since are known or well-documented in literature to be 

involved in the phenotype/condition under study. When no previous biological assumptions are 

available or it is difficult to select pathways from literature information, 

pia.stats.enrichement() command can be useful to explore the list of interesting pathway 

candidates as FDI (see Data analyses section for further explanation). 

The list of available pathways with the relative codes is obtainable by pia.pathList() 

command. 

 

# Look for a specific pathway(s) for PIA, matching your search string 

> list <- pia.pathList(string = "lipid") 

The list of pathway(s), matched your string, was created! 

Remember to use the correct path Id(s) for relative PIA functions. 

> head(list) 

path_description   path_ID 

1   Glycerolipid metabolism   path:map00561 

2   Glycerophospholipid metabolism   path:map00564 

3   Ether lipid metabolism   path:map00565 

4   Sphingolipid metabolism   path:map00600 

5   Glycosphingolipid biosynthesis-lacto and neolacto series   path:map00601 

6   Glycosphingolipid biosynthesis - globo and isoglobo series   path:map00603 

 

For a genes list dataset analysis, the FDI must be provided as a vector of pathway identifiers 

(‘path_ID’). 

 

# Create a vector of pathways of interest (FDI) for pia.script() function 
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> FDI.gene <- c("path:map00061", "path:map00062", "path:map00071", 

"path:map00072") 

 

For a gene expression dataset analysis, the FDI must be provided as a ‘.txt’ file, with the list of 

pathway identifiers and relative pathway expression estimated scores, and stored in a working 

directory. The pathway estimated score is obtainable by common gene set enrichment analysis 

or overrepresented approach analysis (Huang et al., 2009) (e.g. flux value (Bionaz et al., 2012c), 

as shown in trial data). 

 

# Copy the example pathways list file 'expr_listPath.txt' for 

pia.exprscript() function in your current working directory 

> pia.example() 

> FDI.expr <- read.table("expr_listPath.txt", header=TRUE) 

> head(FDI.expr) 

path_ID   value 

1   path:map00010   324.22879 

2   path:map00020   -21.31287 

3   path:map00071   385.73774 

 

IV - 3.4.4. Species code detection 

The KEGG organism code is needed to run proper data analysis functions. The list of codes is 

obtainable with pia.speciesCode() command. 

 

# Look for the ‘bos taurus’ code 

> list <- pia.speciesCode(string = "bos") 

The list of available species matched your string was created! 

> head(list) 

species   pia_code  

1   Bos taurus (cow)   bta  

2   Bos mutus (wild yak)   bom  

3   Bos indicus (zebu cattle)   biu  

4   Malassezia globosa   mgl  

5   Bosea sp. PAMC 26642   bop  

6   Bosea sp. RAC05   bos 

> KEGG.species.bos <- as.character(list[1,2]) #bta 

> KEGG.species.bos 
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[1] bta 

 

IV - 3.5. Data analyses 

PIA analysis can be performed on a single gene list obtained from classical genomic analysis 

(Palombo et al., 2018) or on a gene expression dataset from transcriptomic study. In both cases, 

PIA helps to interpret functional profiles of genes, underlying complex biological processes, 

showing the genes falling inside a network of pathways in interaction. They then may be 

considered good functional candidates for the trait/condition under study. 

 

IV - 3.5.1. Gene list dataset (post-genomic analysis dataset) 

The pia.script() command allows PIA to perform the analysis on the gene list provided. The 

function requires (1) a properly formatted gene list, (2) a vector of FDI pathways, (3) the KEGG 

organism code and (4) the number of interaction levels. The interaction levels represent the 

number of upstream and downstream pathway levels (from 2 to n) required by the user for the 

investigation and connected to FDI pathways based on KEGG database information. Once the 

backbone of pathways in interaction is created, PIA highlights the genes falling inside the 

interaction network generated. 

 

# Copy the example data file 'data.txt' in your current working directory 

> pia.example() 

# Perform PIA 

> pia.script(in.file = "data.txt", out.file = "FA", species = 

KEGG.species.bos, FDI = FDI.gene, levels = 2) 

Input file imported! 

Gene list specified... and correct!  

Species code specified... and correct!  

Pathway(s) is specified... and correct! 

Prerequisite check passed! 

PIA is running ...  

Please wait... It could be a while depending on the number of pathways and 

levels required!  

PIA analysis completed and relative '.txt' files exported!  

Preparing PIA diagram visualization!  

Please wait... It could be a while depending on the number of pathways and 

levels required!  
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Well done! Diagram visualization was created and exported. 

 

The function generates n ‘.txt’ files, with n equal to the number of levels required for the 

investigation (in the above example n = 2), containing the highlighted genes and related 

pathways for each level of interaction.  

 

# Summary of PIA results at FDI (1DI) level obtained with the example dataset 

> genes.1DI <- read.table("PIA_RESULTS_FA/1DIgenes.txt", header = TRUE) 

> genes.1DI 

ensemblgene   entrezgene   gene_name   path_description   path_ID 

1   ENSBTAG00000015980   281152   FASN   Fatty acid biosynthesis   

path:bta00061 

2   ENSBTAG00000015178   505355   ECI2   Fatty acid degradation   path:bta00071 

 

# Summary of PIA results at 2DI level obtained with the example dataset 

> genes.2DI <- read.table("PIA_RESULTS_FA/2DIgenes.txt", header = TRUE) 

> genes.2DI 

ensemblgene   entrezgene   gene_name   path_description   path_ID 

1   ENSBTAG00000016253   369023   G6PC3   Glycolysis / Gluconeogenesis   

path:bta00010 

2   ENSBTAG00000001868   510274   PCYT2   Glycerophospholipid metabolism 

path:bta00564 

 

Along with the tabular format, the function also provides the genes/pathways network 

visualization of PIA results, saved in a ‘.html’ file. The diagram allows us to zoom in on all 

content for an optimal readability and it is interactive, enabling the selection of specific nodes 

(Figures IV-2 and -3).  

 

IV - 3.5.2. Gene expression dataset 

For dataset expression, PIA takes into account any possible interaction among the FDI pathways 

and the list of DEG. The dedicated function is pia.exprscript() and requires (1) a properly 

formatted DEG list, (2) a properly formatted FDI pathways list, (3) the KEGG organism code 

and (4) a p-value cut-off. The function generates a diagram visualization of an interaction 

network that helps to interpret the results obtained from gene expression experiments showing 

the nodes (i.e. genes and pathways) coloured according to their FCs and the provided pathway 
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expression estimated score (e.g. flux values (Bionaz et al., 2012c)), respectively. The node 

classification is a function of top FC or estimated score value, as shown below (Table IV-1). 

 

# Copy the example data files "exprdata.txt" and 'expr_listPath.txt' in your 

current working directory  

> pia.example() 

# Look for the ‘sus scrofa’ code 

> list <- pia.speciesCode(string = "pig") 

The list of available species matched your string was created! 

Remember to use the correct organism code for relative PIA functions. 

> list 

species   pia_code  

1   Sus scrofa (pig)   ssc  

2   Columba livia (rock pigeon)   clv  

3   Cajanus cajan (pigeon pea)   ccaj  

4   Desulfovibrio piger   dpg  

5   Salipiger profundus   tpro  

6   Halopiger xanaduensis   hxa  

> KEGG.species.sus <- as.character(list[1,2]) #ssc 

> KEGG.species.sus 

[1] ssc 

 

# Perform PIA on gene expression dataset  

> pia.exprscript(in.file = "exprdata.txt", path.file = "expr_listPath.txt", 

out.file = "expression_data", species = KEGG.species.sus, pvalue = 0.05) 

Input file imported!  

Pathway input file imported!  

Gene list specified... and correct!  

Your path list colnames are correct!  

Species code specified... and correct!  

Pathway(s) is specified... and correct!  

Prerequisite check passed!  

PIA is running ...  

Please wait... It could be a while depending on the number of pathways 

required! n. 3151 of 7934 genes passed the p-value filtering.  

Well done! Diagram visualization was created and exported. 
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The diagram is interactive allowing us to zoom in on all content for an optimal readability and 

select specific nodes (Figures IV-4 and IV-5). 

 

IV - 3.5.3. Enrichment analysis 

PIA allows us to perform an enrichment analysis for each KEGG term (i.e. pathways) based on 

a hypergeometric test (one-sided Fisher exact test) as described by Simoes and Emmert-Streib 

(Simoes and Emmert-Streib, 2012), with pia.stats.enrichment() command.  

 

# Copy the example data file 'data.txt' in your current working directory  

> pia.example() 

# Perform the enrichment analysis  

> pia.stats.enrichment(in.file = "data.txt", out.file = "enrichment_FA", 

species = KEGG.species.bos)  

Input file is imported!  

Gene list specified... and correct!  

Species code specified... and correct!  

Enrichment analysis started ... and results exported! 

Gene per pathway(s) table created and exported! 

Pathway per gene(s) table created and exported! 

 

The results are a series of ‘.txt’ files with specific enrichment analysis results and with general 

descriptive information about single gene and pathway occurrences. For each pathway a p-value 

is calculated to estimate its probability of over-representation (Simoes and Emmert-Streib, 

2012). This is useful to explore the list of relevant or interesting pathways when no previous 

restrictive biological assumptions are available. 

 

# Summary of enrichment analysis results obtained with the example dataset 

FA_enrich <- read.table("enrichment_FA_enrichment.txt", header = T)  

head(FA_enrich)  

pathway_ID   n_genes   all_genes   pvalue   padj   pathway_name  

1   path:bta01100   8   1308   0.0008543217   0.2776545   Metabolic pathways  

2   path:bta04920   2   72   0.0072621338   0.6386025   Adipocytokine signaling 

pathway  

3   path:bta05212   2   74   0.0076581146   0.6386025   Pancreatic cancer  

4   path:bta04662   2   75   0.0078597229   0.6386025   B cell receptor 

signaling pathway  
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5   path:bta00440   1   6   0.0108120071   0.7027805   Phosphonate and 

phosphinate metabolism  

6   path:bta04152   2   123   0.0202142955   0.8932402   AMPK signaling 

pathway 

FA_GxP <- read.table("enrichment_FA_GxP.txt", header = T)  

head(FA_GxP)  

n_genes   pathway_name   pathway_ID  

1   8   Metabolic pathways   path:bta01100  

2   2   MAPK signaling pathway   path:bta04010  

3   2   Ras signaling pathway   path:bta04014  

4   2   FoxO signaling pathway   path:bta04068  

5   2   PI3K-Akt signaling pathway   path:bta04151  

6   2   AMPK signaling pathway   path:bta04152 

 

FA_PxG <- read.table("enrichment_FA_PxG.txt", header = T)  

head(FA_PxG)  

n_pathways   entrez_gene_id   ensembl_gene_id   gene_symbol  

1   40   281073   ENSBTAG00000007591   CHUK  

2   21   619066   ENSBTAG00000022927   RAC3  

3   12   369023   ENSBTAG00000016253   G6PC3 

4   8   616871   ENSBTAG00000001521   UQCRB  

5   5   281152   ENSBTAG00000015980   FASN  

6   3   510274   ENSBTAG00000001868   PCYT2 

 

IV - 4. Validation 

To evaluate the usefulness of the PIA approach, we used a publicly available dataset on human 

type 1 diabetes mellitus - T1DM (Qiu et al., 2014). In the reference study, the authors carried 

out a gene-based genome-wide association analysis and identified 452 significant genes. 

Among these genes, 171 were newly identified for type 1 diabetes mellitus, not previously 

described in literature. Fifty three out of 171 genes were further supported by replication or 

differential expression studies. Moreover, the authors reported four non-HLA genes (RASIP1, 

STRN4, BCAR1 and MYL2) and three HLA genes (FYN, HLA-J and PPP1R11) as validated 

by both replication and differential expression studies. We performed PIA considering the list 

of 171 newly identified genes, to verify the possible contribution of the PIA approach for 

candidate genes identification and more broadly for high-throughput data interpretation.  
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The validation datasets are downloadable along with the package and can be stored in the 

working directory using the command pia.example(type="validation")command. 

 

IV - 4.1. post-GWAS dataset analysis 

After data preparation, only 5 out of 171 genes had no entrez gene ID. These genes were 

excluded from the analysis and the list of 166 annotated genes was used to run the PIA function. 

 

# Copy the example files used as validation set in the publication in the 

current working directory  

> pia.example(type="validation")  

> validation.genelist <- read.table("genelist_annotated_qiu2014.txt", 

header=TRUE)  

> length(validation.genelist$entrezgene) 

[1] 166 

> head(validation.genelist) 

external_gene_name   entrezgene   ensembl_gene_id  

1   ADAD1   132612   ENSG00000164113  

2   ASCL2   430   ENSG00000183734  

3   ATF7IP   55729   ENSG00000171681  

4   BAK1   578   ENSG00000030110  

5   BCAR1   9564   ENSG00000050820  

6   BCL2A1   597   ENSG00000140379 

 

Considering the complexity of the trait investigated, PIA was performed up to the third degree 

of interaction (Field and Tobias, 1997). The ‘Type I diabetes mellitus’ (map04940), ‘Insulin 

resistance’ (map04931) and ‘AGE-RAGE signaling pathway in diabetic complications’ 

(map04933) pathways were chosen as FDI pathways (Greenbaum, 2002; Ramasamy et al., 

2005). A summary of PIA results is reported in Table IV-2. 

 

#Look for the homo sapiens KEGG specie code 

list <- pia.speciesCode(string = "homo")  

KEGG.species.homo = as.character(list[1,2]) #hsa  

FDI = c("path:map04940", "path:map04931", "path:map04933")  

levels = 3 

# Run the PIA function  
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pia.script(in.file = “genelist_annotated_qiu2014.txt”, out.file = 

"validation", species = KEGG.species.homo, FDI = FDI, levels = levels)  

Input file imported!  

Gene list specified... and correct!  

Species code specified... and correct!  

Pathway(s) is specified... and correct!  

Prerequisite check passed!  

PIA is running ...  

Please wait... It could be a while depending on the number of pathways and 

levels required! 

PIA analysis completed and relative '.txt' files exported! 

Preparing PIA diagram visualization!  

Please wait... It could be a while depending on the number of pathways and 

levels required! 

Well done! Diagram visualization was created and exported. 

 

Overall PIA results obtained from validations dataset are in line with reference study outcomes 

(Qiu et al., 2014), confirming the effectiveness of the PIA approach. In particular, 4 out of 7 

genes validated both replication and differential expression studies (Qiu et al., 2014) were 

highlighted by PIA: PTPN11, BCAR1, MYL2 and FYN (Figure 6). The other three genes 

(RASIP1, STRN4 and HLA-J) were not detected by PIA since, although present in KEGG 

databases, they were not yet assigned to any pathway. 

Along with these genes, PIA also highlighted other interesting genes (ITPR3, BAK1, IL10, 

HMGB1 and MICA) not discussed by Qui et al. (Qiu et al., 2014), since validated only by the 

differential expression studies or only by the replication studies. 

It is worth noting that PIA also highlighted other genes not discussed in the reference study 

(Qiu et al., 2014) but reported in literature as being associated with the susceptibility to T1DM 

disease, in some cases these genes are referred to in research conducted before the reference 

study. In particular, CDK2 (Kim et al., 2017a), RXRB (Shi et al., 2016a), MADCAM1 (Phillips 

et al., 2005a), STAT4 (Bi et al., 2013), BCL2A1 (Beyan et al., 2010a) and SMAD7 (Chen et al., 

2011). Simultaneously, it is worth noting that some genes were not highlighted by PIA, because 

(1) they fell out of the three pathway investigated levels (including BRAP, FUT2, GNS, HIPK1, 

NUPR1, OR2B3, HIST1H4E, HIST1H2BF, OR2B3, OR2B6, OR2J2, OR5V1 and SULT1A1 

genes. (2) Although present in KEGG databases, were not yet assigned to any pathway. These 
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drawbacks clearly represent the main PIA limitations. A comparison among the PIA results and 

reference study (Qiu et al., 2014) is reported in Table IV-3. 

 

IV - 4.2. Enrichment analysis 

Accordingly to the reference study (Qiu et al., 2014), we performed the functional annotation 

clustering analysis of 452 identified T1DM genes, using the PIA enrichment analysis function.  

 

# Copy the example files used as validation set in the publication in the 

current working directory 

> pia.example(type="validation")  

enrich.genelist <- read.table("genelist_enrichment_qui2014.txt", 

header=TRUE)  

> head(enrich.genelist) 

external_gene_name entrezgene ensembl_gene_id  

1 OLFML3 56944 not_available  

2 HIPK1 204851 not_available  

3 IL10 3586 not_available  

4 NSL1 25936 not_available  

5 FAM46B 115572 not_available  

6 LHX9 56956 not_available  

#Look for the specie code matching the search string  

> list <- pia.speciesCode(string = "homo")  

> homo.species = as.character(list[1,2]) # hsa  

# Run the PIA enrichment function  

> pia.stats.enrichment(in.file = “genelist_enrichment_qui2014.txt”, 

out.file = "validation", species=homo.species)  

Input file is imported!  

Gene list specified... and correct!  

Species code specified... and correct!  

Enrichment analysis started ...  

and results exported!  

Gene per pathway(s) table created and exported!  

Pathway per gene(s) table created and exported! 

 

The results showed as genes tend to be over-represented in immune diseases and immune 

system pathways (Supplementary Table IV-S1), according to Qiu et al. (Qiu et al., 2014). 
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#Summary of PIA enrichment result  

> enrichment.result <- read.table("validation_enrichment.txt", header = 

TRUE)  

> head(enrichment.result)  

pathway_ID n_genes all_genes pvalue padj pathway_name  

1 path:hsa05322 26 133 1.338552e-22 4.403835e-20 Systemic lupus 

erythematosus  

2 path:hsa05330 13 38 3.566961e-15 5.867652e-13 Allograft rejection  

3 path:hsa04612 16 77 1.306151e-14 1.432412e-12 Antigen processing and 

presentation  

4 path:hsa05320 14 53 1.763583e-14 1.450547e-12 Autoimmune thyroid disease  

5 path:hsa04940 13 43 2.264972e-14 1.490352e-12 Type I diabetes mellitus  

6 path:hsa05332 12 41 3.705738e-13 2.031980e-11 Graft-versus-host disease 

 

IV - 4.3. Expression dataset analysis 

In order to create an example to illustrate visualization of gene expression values, we used FC 

valued obtained by Levy et al. (Levy et al., 2012) and considered by Qiu et al. (Qiu et al., 2014) 

as reference study for differential expression validation. Since the authors did not provide 

pathway estimation scores, we substituted those values with gene occurrences for each pathway 

of interest, obtained by PIA enrichment analysis. 

 

  

# Copy the example data files "genelist_expr_Levy2012.txt" and 

'pathlist_expr_Levy2012.txt' in your current working directory  

> pia.example(type="validation") 

> expr.validation.genelist <- read.table("genelist_expr_Levy2012.txt”, 

header = TRUE) 

> head(expr.validation.genelist) 

ensembl_gene_id   external_gene_name   entrezgene   FC   pvalue  

1   ENSG00000204252   HLA-DOA   3111   -0.535   0.000  

2   ENSG00000239457   HLA-DOB   3112   -0.017   0.955  

3   ENSG00000168384   HLA-DPA1   3113   -0.491   0.025  

4   ENSG00000206239   HLA-DQA1   3117   -0.846   0.000  

5   ENSG00000206237   HLA-DQB1   3119   -0.467   0.007  

6   ENSG00000204592   HLA-E   3133   0.298   0.014 
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> expr.validation.path <- read.table("pathlist_expr_Levy2012.txt”, header = 

TRUE) 

> head(expr.validation.path) 

path_ID   value  

1   path:map04514   16  

2   path:map04940   14  

3   path:map04151   6  

4   path:map04210   5  

5   path:map04630   5  

6   path:map04010   4 

 

#Look for the specie code matching the search string  

> list <- pia.speciesCode(string = "homo")  

> KEGG.species.homo = as.character(list[1,2]) #hsa 

# Perform PIA on transcriptomic dataset  

> pia.exprscript(in.file = “genelist_expr_Levy2012.txt”, path.file = 

“pathlist_expr_Levy2012.txt”, out.file = "expression_data_validation", 

species = KEGG.species.homo, pvalue = 0.05)  

Input file imported! 

Pathway input file imported! 

Gene list specified... and correct! 

Your path list colnames are correct! 

Species code specified... and correct! 

Pathway(s) is specified... and correct! 

Prerequisite check passed! 

PIA is running ... 

Please wait... It could be a while depending on the number of pathways 

required! 

n. 18 of 30 genes passed the p-value filtering.  

Well done! Diagram visualization was created and exported. 

 

This PIA visualization (Figure IV-7) can help to interpret the results obtained from gene 

expression experiments by showing the nodes (i.e. genes) coloured according to gene FC 

values. The diagram showed the relationships among genes and pathways and allowed us to 

identify functionally related entities with possibly coordinated expression changes. 
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IV - 5. Conclusion 

PIA represents a novel and useful approach to reduce the complexity of high-throughput data 

mining challenges and for candidate gene identification. PIA allows us to overcome the 

limitations of classical functional enrichment analysis providing network-based information 

among pathways and genes, and helping with the interpretation of genomic and transcriptomic 

analysis outcomes. 

PIA is a package entirely built in R. The contribution of PIA in high-throughput data mining 

could be significant not only for well-documented species (i.e. homo sapiens), but also for less-

annotated ones. PIA can work with all the species available in KEGG databases (more than 

5,000 organisms). Although KEGG is a popular database for biological network information, 

the lack of gene or pathway information on the KEGG database could represent the main 

disadvantages of PIA. 

The effectiveness of the PIA approach in terms result coherency was confirmed by the reference 

study validation. Ultimately, PIA produces time-saving advantages, creating a bibliographic list 

of genes that are biologically-involved with the trait investigated.  
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IV - 6. Figures and tables 

 

Figure IV-1. The general architecture of the workflow of PIA package and schematic 

illustration of main functions. 
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Figure IV-2. An example of the ‘.html’ file with the network-based visualization of PIA results. 

The green circles represent the candidate genes falling inside the pathways associated with the 

trait of interest or resulted in interaction. The violet rectangles represent the first-degree 

interaction (FDI or 1DI) pathways, directly connected to the trait of interest and showing 

candidate gene(s). The yellow rectangles represent the second degree (2DI) of pathways in 

interaction with FDI pathways and showing candidate gene(s). The orange rectangles represent 

the pathways investigated without any candidate gene.  

 

Figure IV-3. An example of node selection of PIA network-based visualization result. 
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Figure IV-4. An example of the ‘.html’ file with the network-based visualization of PIA result 

considering an expression dataset. The circles represent the genes coloured based on their fold 

change (FC) values. The rectangles represent the pathways of interest coloured based on their 

expression estimated scores (i.e. flux values obtained with Dynamic Impact Approach (Bionaz 

et al., 2012c)). 

 

Figure IV-5. Node selection of PIA network-based visualization result obtained on expression 

dataset. 
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Figure IV-6. Network-based visualization of result obtained by PIA considering three 

interaction levels. The green circles represent the functional candidate genes falling inside the 

pathways associated with the trait of interest and/or resulted in interaction. The violet rectangles 

represent the first-degree (FDI or 1DI) interaction pathway, directly connected to the trait of 

interest (i.e. Type I diabetes mellitus’, ‘Insulin resistance’, and ‘AGE-RAGE signaling pathway 

in diabetic complications’). The yellow and blue rectangles represent the second (2DI) and third 

(3DI) pathways in interaction with FDI pathways, highlighted by the PIA and containing the 

gene of interest. The orange rectangles represent the pathways investigated showing no results.  
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Figure IV-7. Network-based visualization of PIA result considering expression dataset (Levy 

et al., 2012; Qiu et al., 2014). The circles represent the genes coloured based on their fold 

change (FC) values. The rectangles represent the pathways of interest (i.e. Type I diabetes 

mellitus’, ‘Insulin resistance’, and ‘AGE-RAGE signaling pathway in diabetic complications’) 

coloured based on their expression estimated scores (i.e. in our case genes occurrences).  

 

 

 

Table IV-1. Summary of node colour classification in network visualization obtained with 

pia.exprscript() function.  

 

 

 

gene/pathway 

classification 
with FC/estimated score value 

low 

upregulated/downregulated 

<25% of top up/downregulated  

gene/pathway value 

moderate 

upregulated/downregulated 

≥25% and < 50% of top up/downregulated  

gene/pathway value 

high 

upregulated/downregulated 

≥ 50% and < 75% of top up/downregulated  

gene/pathway value 

strong 

upregulated/downregulated 

≥ 75% of top up/downregulated  

gene/pathway value 
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Table IV-2. Summary of PIA results for three interaction levels, considering ‘Type I diabetes 

mellitus’, ‘Insulin resistance’, and ‘AGE-RAGE signaling pathway in diabetic complications’ 

as FDI or 1DI pathways. 

PIA Interaction 

degree KEGG pathway Gene 

1DI Insulin resistance PTPN11 

2DI 

PI3K-Akt signaling pathway CDK2 

Apoptosis ITPR3, BAK1, BCL2A1 

T cell receptor signaling pathway FYN, IL10 

Calcium signaling pathway ITPR3 

Jak-STAT signaling pathway STAT4, IL10, PTPN11 

Cell cycle CDK2 

TGF-beta signaling pathway SMAD7 

Adipocytokine signaling pathway RXRB, PTPN11 

3DI 

  

Chemokine signaling pathway BCAR1 

NF-kappa B signaling pathway BCL2A1 

FoxO signaling pathway CDK2, IL10 

Phosphatidylinositol signaling system ITPR3 

Cytokine-cytokine receptor interaction IL10 

p53 signaling pathway CDK2 

Autophagy - animal HMGB1 

Protein processing in endoplasmic reticulum BAK1 

Focal adhesion BCAR1, FYN, MYL2 

Cell adhesion molecules (CAMs) MADCAM1 



 

 
Chapter IV - PIA (PATHWAYS INTERACTION ANALYSIS): AN R TOOL FOR ANALYSING AND INTERPRETING 

HIGH-THROUGHPUT DATA 

 
 182 

 

Vascular smooth muscle contraction ITPR3 

Natural killer cell mediated cytotoxicity MICA, FYN, PTPN11 

Long-term potentiation ITPR3 

Long-term depression ITPR3 

Renin secretion ITPR3 

Aldosterone synthesis and secretion ITPR3 

Regulation of actin cytoskeleton MYL2, BCAR1 

 

 

Table IV-3. Comparison between PIA and reference study results (Qiu et al., 2014). 

Genes* highlighted by PIA and consistent with main result in Qui et al. (Qiu et al., 2014) study 

PTPN11, BCAR1, MYL2 and FYN 

* among the 7 genes validated both in replication and differential expression studies (Qiu et al., 

2014)  

 

Genes* highlighted by PIA, reported in literature as being associated to the susceptibility to 

T1DM disease, but not discussed in Qui et al. (Qiu et al., 2014) 

ITPR3 (Qu et al., 2008), BAK1 (Qiu et al., 2014), IL10 (Hong et al., 2009), HMGB1 (Zhang et al., 

2010), MICA (Park et al., 2001), CDK2 (Kim et al., 2017b), RXRB (Shi et al., 2016b), MADCAM1 

(Phillips et al., 2005b), STAT4 (Bi et al., 2013b), BCL2A1 (Beyan et al., 2010b), SMAD7 (Chen et 

al., 2011) 

* among the 23 genes validated in replication studies or 37 in differential expression studies (Qiu et 

al., 2014)  

 

Genes* not highlighted by PIA, since falling inside no-investigated pathways 

BRAP, FUT2, GNS, HIPK1, NUPR1, OR2B3, HIST1H4E, HIST1H2BF, OR2B3, OR2B6, OR2J2, 

OR5V1, SULT1A1 

* among 166 out of 171 newly genes in reference study (Qiu et al., 2014) 
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Genes* detected by Qui et al. (Qiu et al., 2014), but not highlighted by PIA since not yet assigned 

to any KEGG pathways  

ADAD1, ASCL2, ATF7IP, BTN3A3, C6orf227, CABP1, CCDC101, CEACAM7,  CRYZL1,  DEXI, 

ETF1P1, FAM46B, FAP, GCA, GGNBP1, GNL1, GP2, GUSBL1, HIST1H1A, HIST1H1T, 

HIST1H2BD, HIST1H3H, HIST1H4F, HIST1H4G, HIST1H4PS1, HLA-J, HORMAD2,  IKZF1, 

IKZF3, KIAA0528, KIFC1, KRT222, LHX9, LOC144481, LOC284749, MAMSTR, MICG, 

MIR548H3, MIR600, MPZL3, NCAPD2, NSL1, OLFML3, OR12D1P, ORMDL3, PHF1, PLBD1, 

PLEKHA1, PPP1R10, PPP1R11, PRR3, PRSS16, RASIP1, RING1, SBK1, SCGN, SLC17A1, 

SLC17A2, SLC17A3, SLC17A4, SPRR2E, STRN4, TAPBPL, TMEM129, TMEM170A, VPS52, 

ZBTB9, ZNF192, ZNF274, ZNF322A, ZNF323, ZPBP2, ZZEF1 

* among 166 out of 171 newly genes in reference study (Qiu et al., 2014) 

 

Genes* detected by Qui et al. (Qiu et al., 2014), but not highlighted by PIA since had no 

corresponding gene in KEGG databases 

GPR89P, HCG2P8, HCG4P3, HCG4P4, HCG4P9, HCGVIII-2, HCP5P2, LOC100127934, 

LOC100128077, LOC100128588, LOC100129387, LOC100130535, LOC100133214, 

LOC100270746, LOC100288130, LOC100506705, LOC100506979, LOC100507085, LOC340192, 

LOC402641, LYPLA2P1, OR2E1P, OR2U1P, OR2W6P, RPLP2P1, RPS10P1, RSPH1, SUMO2P, 

TRAJ57, TRAJ58, TRDD1, TRDD2, TRIM26, TRIM27, TRMEP1, TRNAA12, TRNAA19, TRNAA38, 

TRNAA40, TRNAA41, TRNAA5, TRNAF3, TRNAI1, TRNAI2, TRNAK43P, TRNAK8, TRNAL12, 

TRNAL47P, TRNAM15, TRNAM16, TRNAM4, TRNAM8, TRNAR10, TRNAS7, TRNAT11, 

TRNAT16, TRNAT7, TRNAV15, TRNAV27, TRNAV7, TRNAW2, TRNAY7, TRNAY8, UBD, 

VN1R14P 

* among 166 out of 171 newly genes in reference study (Qiu et al., 2014) 
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Chapter V - GENERAL CONCLUSION 

Since the beginning of domestication, livestock species were selected to fulfill human needs. 

Breed creation intensified the differentiation between animal populations and promoted the 

development of intensive selection schemes. Most of the animal breeding theory we are still 

using today, was developed in the first half of the 20th century, when innovative statistical 

techniques (i.e. best linear unbiased prediction - BLUP) were used to select various traits that 

optimize animals performance and select those with most optimal combinations, i.e. estimation 

of breeding value (EBV) (Henderson, 1984). Subsequently, the increasing availability of DNA 

information provided promising opportunities to enhance animal breeding theory. In particular, 

new advances in animal genotyping fostered the development of marker-assisted selection 

(MAS) (Dekkers, 2004) and more recently of so-called genomic selection (GS) (Meuwissen, 

2007). All of this is producing positive genetic trends in many productive traits, particularly 

increasing reliability of genomic EBV (GEBV) compared with parent average estimates (Hayes 

et al., 2009). Despite the fact that advances have resulted in more accurate selection results and 

a faster genetic improvement across generations, much more is expected (Hayes et al., 2009). 

In fact, we still have a poor knowledge about gene biology of phenotypes under selection. A 

deeper understanding of animal genome organization and information would further increase 

the accuracy of genomic evaluation by incorporating prior knowledge. In this regard, it is 

expected that the new and revolutionary advent of high-throughput ‘omics’ (HTO) technologies 

has the capability to spearhead the progress of systems biology, including applications on 

animal production and health traits (Suravajhala et al., 2016).  

In thesis the biology of livestock complex traits, such as lipid metabolism and 

colostrogenesis/lactogenesis transition respectively in bovine and pig species, has been 

investigated using state-of-art genomic and transcriptomic analyses. In particular, these goals 

have been achieved by complementary approaches and different methods. In chapter 2, a 

genome-wide association study (GWAS) on bovine milk was performed with the aim to identify 

genomic regions or genes associated with fatty acids (FA) profile and investigate genetic 

differences between Italian Simmental (IS) and Italian Holstein (IH) breeds. Along with single-

SNP GWAS, an innovative post-GWAS pipeline was applied. It was mainly based on a gene-

centric association (Capomaccio et al., 2015) and pathways interaction investigation (see 

chapter 4) approaches. This helped us to dissect and prioritize the GWAS association signals 

with the aim of finding candidate genes affecting breed-specific FA composition. In particular, 
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according to previous results reported in literature, the effects of well-established genes 

associated with milk fat yield and content were confirmed by our study. Moreover, other 

possible candidate genes, several of them directly or indirectly involved in ‘Lipid Metabolism’, 

were also identified. Overall, the findings improve our understanding of genetic architecture in 

IS and IH cows and reflect breed-specific genomic features. The differences are explainable by 

the different productive characteristics and divergent selective breeding history of two breeds 

under study and represent further molecular information useful in breeding programs. 

In chapter 3, an RNA sequencing analysis was performed on sow mammary gland from 14 days 

prior to parturition to day 1 in lactation to provide a comprehensive transcriptome profiling to 

better elucidate the biological mechanism of swine colostrogenesis/lactogenesis. This transition 

step plays a key role in piglet survival and growth, which represents a major problem especially 

in modern pig production where piglet mortality is high during the first days of life (Theil et 

al., 2014). In fact, colostrum and transient milk are pivotal sources of antibodies, energy and 

nutrients for any neonate and especially for piglets that are deficient in fat depots and brown 

adipose tissue (Salmon, 2000; Pastorelli et al., 2009). With the goal of highlighting the 

differentially expressed genes (DEG) among the different time points under study, we applied 

a well-established post-sequencing analysis pipeline based on the edgeR (Robinson et al., 2010) 

and limma-voom (Law et al., 2014) methods. Furthermore, functional bioinformatics tools such 

as the Dynamic Impact Approach (DIA) (Bionaz et al., 2012) and Ingenuity Pathway Analysis 

(IPA) (Ingenuity Systems, Redwood City, CA) were used for pathway analysis and to identify 

transcription regulators and their networks. This study produced a huge amount of genomic 

information that provided us a better understanding of metabolic and signalling pathways 

involved in the sow peripartum period. In fact, although the precise timing for the transition 

from colostrogenesis to lactogenesis in swine remains unclear, our data supported the 

hypothesis that the transition occurs before parturition. This is likely attributable to upregulation 

of a wide array of genes along with the activation of transcription regulators controlling lipid 

synthesis and endoplasmic reticulum biogenesis and stress response. In summary, the 

transcriptome changes greatly between 6 and 2 days prepartum and these changes are highly 

likely to be involved in coordinating the synthesis of colostrum and main milk components (i.e. 

protein, fat, lactose and antimicrobial factors) as revealed by influenced pathways. 

In addition to the objectives and related studies summarized above, this thesis also introduced 

an in-house bioinformatics tool performing a new pathway analysis useful for post-genomic 
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and -transcriptomic data mining.  In chapter 4, the PIA (Pathway Interaction Analysis) R 

package was described. The basic idea of PIA is to implement a pathway analysis taking into 

account a network of both upstream and downstream pathways in interaction. Pathway analysis 

(PA) is commonly applied for the secondary analysis of high-throughput experiments (Khatri 

and Drăghici, 2005). Nevertheless, the majority of PA tools freely available performs analysis 

within a single pathway (Curtis et al., 2005). This represent a clear limitation in ‘omic’ research 

that has its strength in a holistic approach. Specifically, focus on a single pathways of interest 

may reduce the information obtainable by the modern HT platforms. We believe that PIA can 

help to interpret HT data and identify candidate genes for function that can influence multiple 

and complex biological processes. In particular, we think that PIA data visualization, in the 

form of interactive pathway diagrams and gene-pathway biological interactions, can enhance 

interpretation of scientific data, increase understanding of the conclusions drawn, and promote 

discussion and follow-up research questions. In this regard, PIA was validated using a publicly 

available dataset on human type 1 diabetes mellitus (Qiu et al., 2014) and showed remarkable 

advantages in terms of effectiveness and time-saving.  

In conclusion, with the general aim of providing new genetic information for animal breeding, 

this thesis has explored the possibilities offered by HTO technologies in the genomic and 

transcriptomic field, such as High Density genotyping and Next Generation Sequencing, with 

established and innovative bioinformatics procedures. The single-research results were 

significant and more broadly they dimostrated that the omic approach represents the gold 

standard method to give insight into the most complex biological mechanisms. In this regard, 

omic data analysis represents a revolutionary gain that increasingly depend on researchers 

capable of creating and implementing effective and integrative pipelines that comprise 

integrated (multi)omics approaches instead of distinct and monothematic ones (Suravajhala et 

al., 2016; Manzoni et al., 2018). This clearly requires the cooperation of multidisciplinary 

teams. It is early days yet, but what is certain is that we finally have the great opportunity to 

pinpoint key elements of biological questions that would have been impossible decades ago. 

  



 

 
Chapter V - GENERAL CONCLUSION 

 
 193 

 

V - 1. References 

Bionaz, M., K. Periasamy, S.L. Rodriguez-Zas, W.L. Hurley, and J.J. Loor. 2012. A novel 

dynamic impact approach (DIA) for functional analysis of time-course omics studies: validation 

using the bovine mammary transcriptome. PloS One 7:e32455. 

doi:10.1371/journal.pone.0032455. 

 

Capomaccio, S., M. Milanesi, L. Bomba, E. Vajana, and P. Ajmone-Marsan. 2015. MUGBAS: 

a species free gene-based programme suite for post-GWAS analysis. Bioinforma. Oxf. Engl. 

31:2380–2381. doi:10.1093/bioinformatics/btv144. 

 

Curtis, R.K., M. Oresic, and A. Vidal-Puig. 2005. Pathways to the analysis of microarray data. 

Trends Biotechnol. 23:429–435. doi:10.1016/j.tibtech.2005.05.011. 

 

Dekkers, J.C.M. 2004. Commercial application of marker- and gene-assisted selection in 

livestock: strategies and lessons. J. Anim. Sci. 82 E-Suppl:E313-328. 

doi:10.2527/2004.8213_supplE313x. 

 

Hayes, B.J., P.J. Bowman, A.J. Chamberlain, and M.E. Goddard. 2009. Invited review: 

Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92:433–443. 

doi:10.3168/jds.2008-1646. 

 

Henderson, C.R. 1984. Applications of linear models in animal breeding. Appl. Linear Models 

Anim. Breed. 

 

Khatri, P., and S. Drăghici. 2005. Ontological analysis of gene expression data: current tools, 

limitations, and open problems. Bioinforma. Oxf. Engl. 21:3587–3595. 

doi:10.1093/bioinformatics/bti565. 

 

Law, C.W., Y. Chen, W. Shi, and G.K. Smyth. 2014. voom: Precision weights unlock linear 

model analysis tools for RNA-seq read counts. Genome Biol. 15:R29. doi:10.1186/gb-2014-

15-2-r29. 

 



 

 
Chapter V - GENERAL CONCLUSION 

 
 194 

 

Manzoni, C., D.A. Kia, J. Vandrovcova, J. Hardy, N.W. Wood, P.A. Lewis, and R. Ferrari. 

2018. Genome, transcriptome and proteome: the rise of omics data and their integration in 

biomedical sciences. Brief. Bioinform. 19:286–302. doi:10.1093/bib/bbw114. 

 

Meuwissen, T. 2007. Genomic selection: marker assisted selection on a genome wide scale. J. 

Anim. Breed. Genet. Z. Tierzuchtung Zuchtungsbiologie 124:321–322. doi:10.1111/j.1439-

0388.2007.00708.x. 

 

Palombo, V., M. Milanesi, S. Sgorlon, S. Capomaccio, M. Mele, E. Nicolazzi, P. Ajmone-

Marsan, F. Pilla, B. Stefanon, and M. D’Andrea. 2018. Genome-wide association study of milk 

fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide 

polymorphism arrays. J. Dairy Sci. doi:10.3168/jds.2018-14413. 

 

Pastorelli, G., M. Neil, and I. Wigren. 2009. Body composition and muscle glycogen contents 

of piglets of sows fed diets differing in fatty acids profile and contents. Livest. Sci. 123:329–

334. doi:10.1016/j.livsci.2008.11.023. 

 

Qiu, Y.-H., F.-Y. Deng, M.-J. Li, and S.-F. Lei. 2014. Identification of novel risk genes 

associated with type 1 diabetes mellitus using a genome-wide gene-based association analysis. 

J. Diabetes Investig. 5:649–656. doi:10.1111/jdi.12228. 

 

Robinson, M.D., D.J. McCarthy, and G.K. Smyth. 2010. edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinforma. Oxf. Engl. 26:139–

140. doi:10.1093/bioinformatics/btp616. 

Salmon, H. 2000. Mammary gland immunology and neonate protection in pigs. Homing of 

lymphocytes into the MG. Adv. Exp. Med. Biol. 480:279–286. doi:10.1007/0-306-46832-8_32. 

 

Suravajhala, P., L.J.A. Kogelman, and H.N. Kadarmideen. 2016. Multi-omic data integration 

and analysis using systems genomics approaches: methods and applications in animal 

production, health and welfare. Genet. Sel. Evol. GSE 48. doi:10.1186/s12711-016-0217-x. 

 



 

 
Chapter V - GENERAL CONCLUSION 

 
 195 

 

Theil, P.K., C. Lauridsen, and H. Quesnel. 2014. Neonatal piglet survival: impact of sow 

nutrition around parturition on fetal glycogen deposition and production and composition of 

colostrum and transient milk. Animal 8:1021–1030. doi:10.1017/S1751731114000950. 

 

Vailati-Riboni, M., Palombo V., and Loor J.J. 2017. What are omics sciences? Periparturient 

Diseases of Dairy Cows: A Systems Biology Approach pp. 1-7. 

  



 

 
SUPPLEMENTARY MATERIAL 

 
 196 

 

SUPPLEMENTARY MATERIAL 

 

Supplementary Table II-S1. Significant genes (i.e. FDR q-values less than or equal to 0.05) 

obtained with MUGBAS analysis and associated with milk fatty acid (FA) traits in Italian 

Simmental (IS) and Italian Holstein (IH). Ensembl gene id, false discovery rate (FDR) q-value 

statistics, gene symbol, chromosome and genome location are reported for each gene. SNP 

name, GWA p-value and genome location are reported for each best SNP. 
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Supplementary Table II-S2. Significant genes (i.e. FDR q-values less than or equal to 0.05) 

obtained with MUGBAS analysis divided for each chromosome (Chr), breed and fatty acid 

(FA). 
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Supplementary Table III-S1. Summary of upstream transcription regulators (TR) in -2vs-14 and 

+1vs-14 time comparisons obtained by IPA. 

 

 

 

 

-2vs-14 comparison

Upstream 

Regulator

Expr 

Fold Change
Molecule Type

Predicted 

Activation State

Activation 

z-score

p-value 

of overlap
Target molecules in dataset

XBP1  transcription regulator Activated 5,436 6,23E-14

APBB2,APP,ARFGAP3,CALR,COPB2,COPE,COPZ1,CREB3L1,DAD1,EDEM2,GGCX,GOLGA3

,GOLGA4,GOLPH3L,KDELR3,LMAN2,NUCB2,ORMDL3,PDIA3,PDIA4,PDIA6,RPN1,RPN2,S

DF2L1,SEC61A1,SEC61B,SERP1,SRPRA,SSR2,SSR3,YIF1A

SREBP1  transcription regulator Activated 2,227 0,00594
ACSL1,BHLHE40,CYP7A1,FADS1,GPAM,GRSF1,GSR,IL10,LGALS3,LSS,PCK2,RDH11,STXB

P1

ATF6  transcription regulator Activated 2 0,0076 APP,CALR,DERL3,NUCB2,PDIA4,UNC13B

FOS -1,556 transcription regulator Inhibited -2,102 0,00274

ANXA4,APLN,AQP3,ARF1,B4GALT1,Ccnjl,CRABP2,CTSV,EDN1,FOLR2,FOXA1,GSR,IL10,

KRT8,LGALS3,MET,MXD1,PGAM2,PLAUR,RARG,RBBP4,RBBP7,RIPK4,SDC1,SNX3,SUMO

2,VIM,XDH

KLF4 -1,194 transcription regulator Inhibited -2,156 0,00104
ACVR1,CITED1,CRABP2,CTNNB1,CYP1A1,DSP,DUSP1,HES1,HEY2,IL10,NOS3,NOV,NRP1,

NTF4,PLAUR,TWIST2,VIM

FBXW7 -1,023 transcription regulator Inhibited -2,209 0,000137 APP,CD36,CREB3L1,DGAT1,FGFBP1,GPAM

+1vs-14 comparison

Upstream 

Regulator

Expr 

Fold Change
Molecule Type

Predicted 

Activation State

Activation 

z-score

p-value 

of overlap
Target molecules in dataset

XBP1  transcription regulator Activated 6,084 1,09E-28

ALG2,APBB2,APP,ARCN1,ARFGAP3,BET1,BLZF1,CALR,CAT,COPB2,COPE,COPZ1,CREB3,CREB3L1,CXCL2,DA

D1,DDIT3,DDOST,DNAJB11,DNAJB9,DNAJC3,EDEM2,EIF2AK3,ERP29,FKBP2,FKBP7,GGCX,GOLGA3,GOLGA4,

GOLPH3L,GORASP2,HLA-

DRA,HSP90B1,HSPA13,HYOU1,ICAM1,KDELR3,LMAN1,LMAN2,MAP1LC3B,MGAT2,MOGS,MYC,NOS2,NR1H

3,NUCB2,ORMDL3,PDIA3,PDIA4,PDIA6,PIGA,PRNP,RABAC1,RPN1,RPN2,SDF2L1,SEC11C,SEC23B,SEC31A,SEC

61A1,SEC61B,SEC61G,SEC63,SERP1,SMC3,SOD1,SPARC,SRP19,SRP54,SRP68,SRPRA,SSR1,SSR2,SSR3,STX5,SYV

N1,TNFSF11,TRAM1,TXNDC11,USO1,VAMP4,XRCC6,YIF1A

IRF7 1,988 transcription regulator Activated 4,693 0,0000507

ADAR,CASP4,CCL8,CD40,CD69,CMPK2,CXCL10,DDX58,GBP1,HERC5,IFI44,IFIT1,IFIT3,IL15,IRF7,IRF9,ISG15,JA

K2,MAP3K8,MCL1,MX1,NAMPT,PARP14,PSME1,PSME2,RSAD2,STAT1,STAT2,TLR4,TMBIM6,UBA7,UBE2L6,

USP18,ZBP1,ZC3HAV1

TP53 -1,703 transcription regulator Activated 4,254 7,57E-39

ACAT1,ACP2,ACSL3,ACTA2,ACTL6A,ACTN4,ADAMTSL4,ADH5,AHCY,AIFM2,AKR1B1,ALDH18A1,ALDH4

A1,ANKH,ANTXR1,ANXA4,APBB2,APOE,APP,ARAP2,ASF1B,ASXL1,ATF3,ATG2B,ATG4A,ATXN1,AURKA,

AURKB,BCAP31,BCL3,BHLHE40,BLZF1,BNIP3,BRCA1,BTG1,BTG2,C1QC,CA9,CALU,CAMK2N1,CARHSP1,CAR

S,CASP2,CASP4,CASP9,CAT,CCNA2,CCNB1,CCNB2,CCNE2,CCNG1,CCNL1,CD47,CD59,CDC20,CDC6,CDK1,CDK

2,CDKN2D,CEP55,CGREF1,CITED2,CKAP2,CKM,CNN1,COL1A2,COL4A1,COL4A2,COMT,CP,CREB3,CRYAB,CSK

,CSRP1,CTGF,CTNNB1,CTSB,CTSK,CYB5A,CYP51A1,CYR61,DBI,DCK,DDIT3,DDR1,DGKA,DHCR24,DLGAP5,DR

AM1,DSN1,DSTN,DUSP1,DUSP5,E2F5,E2F8,EIF2AK3,ERCC3,ESPL1,EXO1,F11R,FAM83D,FANCI,FDPS,FERMT2,

FGF13,FGFBP1,FIGNL1,FOS,FOXM1,FOXO3,FUBP1,FUCA1,GADD45G,GATM,GBP1,GLRX,GLUL,GNA13,GNL3,G

SR,GSTP1,H2AFZ,HERC5,HIC1,HJURP,HK2,HLA-

DQA1,HMGCS1,HMMR,HS3ST1,HSPD1,ICAM1,ID2,IDH1,IDH2,IDH3G,IFI30,IGDCC4,IGFBP7,IL10,IL10RA,INPP4

A,IRF5,IRF7,IRF9,ISG15,ITGA2,JUN,KAT2B,KIFC1,KIT,KRT14,KSR1,LAPTM4A,LGALS3,LIMK2,LMAN2,LOX,LP

IN1,LSS,LYZ,MAD2L1,MAFB,MAN2A1,MAP3K8,MAP4K2,MAPRE3,MBNL2,MCL1,MCM2,MCM3,MELK,MMP

23B,MPI,MPZL2,MRPL46,MSH2,MT-CO2,MT-CYB,MT-

ND5,MVK,MX1,MYC,MYL9,MYO1C,MYO6,NAMPT,NCAPG,NEK2,NFKBIA,NOLC1,NOS2,NOS3,NPM1,NR2F1,N

RARP,NRP1,OMA1,P4HA1,PARD6B,PBK,PCBP4,PCLAF,PCNA,PDCD6IP,PDIA6,PDK1,PEX2,PHKG1,PIM1,PLA2

G16,PLK2,PMM1,POLA1,POLD1,POLD2,POLE2,POLK,PPARD,PPM1A,PPM1F,PPP1CC,PRDX3,PRDX6,PRKAB1,P

RKAB2,PRKAG2,PRNP,PROM1,PSEN2,PSMD3,PSRC1,PTGS1,PTTG1,RAB8A,RACGAP1,RAD51,RAD51AP1,RAL

Y,RB1CC1,RBBP4,RBBP7,RBM3,RFC4,RGS12,RNASE4,RPN1,RPN2,RPS25,RPS6KA2,RPSA,RRM2B,S100B,SEC23B,

SEC61A1,SEC61B,SEMA6A,SERPINE1,SESN1,SLC16A1,SLC19A1,SMARCB1,SMC3,SMC4,SNX5,SOD1,SOD2,SPC

25,SPDL1,SPHK2,SPP1,SQLE,SRC,SRSF3,ST14,STARD4,STAT1,STEAP3,STMN1,SUCLG1,TBL1X,TDP2,TIGAR,TI

MP2,TINAGL1,TMED7,TMEM127,TOP2A,TP53,TP53INP1,TPD52L1,TRAP1,TRIM6,TSC2,TTC28,TUBB,UBE2C,U

BE2T,UNC5B,USO1,USP9X,VAMP4,VASN,VCAN,VDR,VIM,VRK1,WDHD1,WSB2,XPNPEP1,XPO1,YPEL3,ZFP36L

1,ZYX

NUPR1  transcription regulator Activated 4,1 8,02E-13

ACSS1,ANP32A,ARMC7,ATF3,AURKA,B3GAT3,BNIP3,BRCA1,BTG1,C8orf58,CAMK2N1,CASP2,CCNA2,CCNB2

,CCNF,CDCA3,CDK2,CENPC,CENPI,CITED2,COL1A2,CROT,CXADR,CXCR4,CYR61,DDIT3,DGCR8,DHCR24,DNM

T3B,DSN1,DUSP5,E2F8,ELL2,ERCC6L,ESPL1,EXO1,FANCD2,FCF1,FCHSD2,FLVCR1,FOXO3,FUCA1,GK,GPCPD1,

GRAMD3,GSTA4,HJURP,HK2,IL13RA1,ITPR3,KIF11,KIF20A,KIF2C,KIFC1,KXD1,LMNB1,LRP8,MGLL,MGME1,M

MD,MXD1,MYC,MYD88,NAAA,NCKIPSD,NEIL3,NFIL3,NR1D2,NRBF2,OSBPL6,OSER1,P4HA2,PARP1,PARP9,PC

YOX1,PDK1,PIM1,POLA2,POLE2,PRNP,PTPRJ,RAD51,RBMS1,RELB,RILPL2,RNF19B,RPA1,SAMD4A,SERPINE1,

SKA2,SKP2,SLC39A8,SPAG5,SPC25,SPDL1,STX3,SUOX,TDRKH,TFAP2A,TMEM167B,TMEM19,TP53,TRERF1,T

UBGCP5,UAP1,UNC5B,ZC3HAV1,ZFAND2A,ZFP36L1

NFATC2 2 transcription regulator Activated 4,092 0,0000323

ABCA1,CCNA2,CCNB1,CCNF,CD40,CITED2,CMPK2,CRYAB,CX3CR1,CXCL10,DAB2,DGKA,E2F5,FGL2,HDAC1,I

FIT3,IL10,IL15,IL18,IRF7,ISG15,MERTK,MYC,NFKBIZ,PDZD2,PLK2,PTPRK,RSAD2,SRC,STAT1,STAT2,TLR3,US

P25

CDKN2A  transcription regulator Activated 3,973 1,52E-11

ASF1B,AURKB,BTG2,CAPG,CCNA2,CCNB1,CCNG1,CDCA5,CDCA7L,CDK1,CDK2,CDKN2C,CDKN2D,CENPK,CH

AF1A,CITED2,CNOT6L,CTGF,CXCL10,DCK,DCTN4,DDR1,DONSON,DUSP1,Esrra,FANCA,FBL,FOS,FOXA1,GAD

D45G,GNA13,GNL3,HOXB9,IL15,ITGAV,ITGB3,JAK2,JUN,KCNK1,KIFC1,LGALS3,MAD2L1,MCL1,MCMBP,MEL

K,MYC,MYCN,NPM1,ODC1,P4HA2,PCNA,POLD2,POLK,RAB27A,RAD51AP1,RBBP7,RFC4,RRM2B,SERPINE1,S

H3BP2,SKP2,TCF19,TLR4,TNFRSF1A,TP53,TP53INP1,UBR7,VIM,VRK1,ZNF385A

IRF3 1,356 transcription regulator Activated 3,721 0,00108
ADAM9,ANXA4,B2M,B4GALT5,CD69,CMPK2,CXCL10,DDX58,GBP1,IFI44,IFIT1,IFIT3,IL10,IL15,IRF5,IRF7,ISG15

,MARCH6,NOS2,PARP14,PRNP,RSAD2,STAT1,STAT2,TFAP2C,TLR3,TLR4,TNFAIP3,UBE2L6,USP18,VIM,ZBP1

SREBP1  transcription regulator Activated 3,517 0,0000298

ABCA1,ACACB,ACADS,BHLHE40,CFD,CXCL10,CYB5A,CYP51A1,CYP7A1,DBI,DPY19L3,FADS1,FADS2,FDPS,G

RSF1,GSR,HK2,HMGCS1,HSPA13,IDH1,IL10,INSIG1,LGALS3,LPIN1,LSS,MSMO1,NOS2,NPC1,NR1H3,NSDHL,PC

K2,PPAT,RDH11,SCD,SERPINE1,SQLE,STARD4,STXBP1,SUCLG1,TM7SF2,TP53
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RB1 -1,014 transcription regulator Activated 3,509 0,00000197

ACTC1,ANGPT2,ASF1B,ATP6V1D,AURKB,BNIP3,BRCA1,CASP4,CASP9,CCNA2,CCNB1,CCNE2,CDC6,CDCA5,C

DCA7L,CDK1,CDK2,CENPK,CHAF1A,CHRNB1,CITED2,CKM,CNOT6L,COL4A3BP,CSN2,CTGF,DCK,DCTN4,DDI

T3,DONSON,Esrra,FANCA,FOS,KCNK1,KIT,LACTB,LCK,LIG1,MCM2,MCM3,MCMBP,MELK,MTOR,MYB,MYC,

ORC1,PARP1,PCLAF,PCNA,PGAM2,PGRMC1,PIM1,PSEN2,PTGS1,RAB27A,RAD51,RAD51AP1,RFC4,RSL1D1,SD

HD,SERPINE1,SH3BP2,SKP2,SOD2,SRPRA,TCF19,TOPBP1,TP53,UBR7,VDAC1,VRK1

KDM5B  transcription regulator Activated 3,434 0,000000579

ARL6IP5,AURKA,BRCA1,BUB3,CCNB1,CDCA3,CDK1,CLDN1,CTGF,CYB5A,DDIT3,DHCR24,DLGAP5,FOXA1,H

MMR,HSD17B8,INSIG1,ISG15,KIF2C,LRCH4,MAPK8IP3,MCM2,MCM3,NEDD9,OSER1,PBK,PGR,PSIP1,RNF40,SN

RPD1,SOX9,SWAP70,TNFSF13,TOP2A,UBR7

IRF5 -2,296 transcription regulator Activated 3,206 0,000836
CMPK2,CXCL10,CXCL2,CXCR4,DDX58,IFI44,IFIT1,IFIT3,IRF5,IRF7,ISG15,NAMPT,PRKRA,RSAD2,STAT1,STAT

2,UBE2L6

ECSIT -1,026 transcription regulator Activated 2,942 0,00148 BCL3,CD83,IRF7,NFKBIA,NFKBIE,PIM1,RELB,SOD2,TNFAIP3

SMARCB1 -1,466 transcription regulator Activated 2,863 0,00000201

ACAT1,ACTR2,AURKA,BAG3,BNIP3,BTG1,CCNA2,CDC6,CDK1,CDKN2C,CIDEB,COL1A2,CXCR4,DSC2,F10,F11

R,FASTK,FOS,GJB1,HES1,HP,KIF11,LBP,MCM2,MCM3,MX1,MYC,PGLYRP1,PLK4,POLA1,PRKAB2,RAB3B,RAD

51AP1,RFC5,SKP2,SMARCB1,SMC4,SPARC,TP53

RELA 1,089 transcription regulator Activated 2,856 0,00000822

ACTA2,ACTN4,AHR,ALCAM,APOE,APP,ARFGAP3,ARHGDIB,B2M,BCL3,BEX2,BLVRA,BTG2,CD14,CD40,CD59

,CD69,CFB,CHI3L1,CITED2,COL1A2,COL4A3BP,CSN2,CTGF,CTSB,CXCL10,CXCL2,CXCR4,CYBB,DDIT3,DUSP1,E

PAS1,ERAP1,FOS,FSCN1,GBP1,GRK5,HES1,ICAM1,IL10,IRF7,ISG15,JUN,KIT,LUM,MST1R,MT-

CYB,MYB,MYC,NAMPT,NFKBIA,NFKBIB,NFKBIE,NOS2,ORAI1,PRDX6,PRKCD,RELB,SAA1,SOD2,SOX9,STIM

1,SYTL1,THOC1,TLR2,TNFAIP3,TP53,TWIST2,VIM,XIAP

CREB1  transcription regulator Activated 2,819 0,0000398

ABCA1,ADORA2A,APOE,ATF3,ATP2B4,ATP6V0D1,AURKA,BAG3,BCAP29,BHLHE40,BNIP3,BTG2,CADPS2,C

ARS,CCNA2,CCNB1,CCNB2,Ccnjl,CGREF1,CLMP,CNN1,COCH,CRYM,CSRP2,CXCL2,CXCR4,CYP51A1,CYR61,DC

X,DGKA,DUSP1,ENTPD1,ESD,FGF13,FGL2,FOS,GADD45B,GADD45G,GDF11,GLA,GLS,HLA-DQB1,HLA-

DRA,HMGCS1,HSD11B1,IRF7,JUN,KDELR3,KIAA1549L,LAPTM4B,LCN2,LGALS8,LITAF,LMO1,LSM11,LSS,MC

L1,MEST,MRPS18B,MSMO1,MVK,MYC,NFIL3,NNAT,NOS2,NPC2,NREP,NRP1,PCNA,PCSK1,RAD54L,RBMX,SC

D,SEC63,SIAH2,SLC16A1,SLC19A1,SLC35G2,SOD2,SQSTM1,STAC2,STAT3,STMN1,SULT2B1,TFAP2A,TINF2,T

NFSF11,TP53INP2,VIM

STAT1 1,642 transcription regulator Activated 2,797 0,00000982

ABCA1,ALDH1A3,ANGPT2,APOE,B2M,BATF2,BCL6,BTG1,CASP2,CASP4,CD14,CD40,CDK2,CFB,CLIC5,CMPK2

,CSN2,CXCL10,CXCL2,FCER1G,FCGR2B,FGL2,FOS,FURIN,GBP1,HES1,HTRA1,ICAM1,IFIT1,IFIT3,IL10,IL15,IRF5,I

RF7,IRF9,ISG15,JAK2,JUN,LCN2,LY96,MX1,MYC,NOS2,PARP9,PIM1,PSME1,PSME2,RSAD2,SMARCB1,STAT1,S

TAT2,TAPBPL,TLR3,TLR4,TP53,UBD,USP18

CEBPA  transcription regulator Activated 2,786 0,0000205

ABCA3,AKR1B1,ANPEP,ARL6IP5,BTG1,BTG2,CA2,CCNA2,CCNB2,CD14,CFD,CHI3L1,COL1A2,CRABP2,CREG1,

CSN2,CTSK,CXCR4,CYP7A1,F8,FOS,FOXM1,FOXO3,G0S2,GBP1,GGH,GLRX,GRHL3,GSTP1,H1FX,HGF,HP,HSD11

B1,ICAM1,ID2,IL10,ISG15,JUN,KCNMB1,KRT14,LCK,LCN2,LITAF,LTF,MT-

CO1,MYC,MYCN,NFATC2,NFIL3,NRP1,OXTR,PCNA,PLXND1,PPARA,PPARD,PTGS1,PTPRC,S100A9,SAA1,SCA

P,SCD,SERPINE1,SMPDL3A,SOD1,SOD2,SPP1,TFAP2A,TNFRSF1A,UBE2I,VCAN,VDR,ZBTB48,ZMIZ1

ID3  transcription regulator Activated 2,777 0,00132

BCL3,BCL6,CCNB1,CCNE2,CCNG1,CD72,CD83,CDC6,CDK1,CDKN2C,CXCR4,DUSP1,FCER1G,FOXO3,GADD45B,G

ADD45G,GNL3,HOMER2,ICAM1,IL10,IL10RA,IL17RB,IRF5,ITGB3,JAK2,MAP3K14,MYB,MYC,RPS6KA2,TNFRSF

1A,TNFSF11,TP53,ZBTB16

EPAS1 2,056 transcription regulator Activated 2,586 0,000000224

ANGPT2,ANGPTL4,ATG5,BHLHE40,BNIP3,C1QA,CA9,CAT,CCR5,CDCP1,CHMP2B,CITED2,CKM,CKMT2,CLDN

1,CTGF,CXCL2,CXCR4,CYP51A1,DDIT3,FOS,GADD45B,GCHFR,GLS,HMGCS1,ITGAV,ITGB3,LOX,MAFF,MANF,

NFIL3,NOS3,NRARP,OMA1,PAN2,RB1CC1,SCAP,SERPINE1,SLC29A1,SOD1,SOD2,SOX9,STC2,TEK,TMEM45A,

TNFAIP3

FOXO3 4,974 transcription regulator Activated 2,573 0,000000116

BNIP3,CAT,CCNB1,CCNE2,CLDN1,CTGF,CTSV,CXCL10,CYR61,DDIT3,FOS,FOXM1,FOXO3,FOXO4,GABARAPL

1,GADD45B,GLUL,GTF2I,IL10,IMPDH2,LCN2,MAX,MXD1,MXD3,MYC,NAMPT,NFKBIA,NOS2,NOS3,PAK1,PR

DX3,PRDX5,PRNP,Rcan1,SESN1,SH2B3,SKP2,SOD1,SOD2,TNFRSF1A,UBE2C,VIM,YBX1

HIF1A -1,027 transcription regulator Activated 2,523 2,08E-08

ACTA2,ANGPTL4,ANKRD37,APOE,AQP9,ATG9A,ATP7A,AURKA,BHLHE40,BNIP3,BRCA1,CA9,CARS,CCR5,C

DCP1,CITED2,CLDN1,CTGF,CTPS1,CXCL2,CXCR4,CYB5A,CYR61,EMC9,EPAS1,FOS,FSCN1,FURIN,GADD45B,GC

HFR,GHR,GLYR1,HES6,HK2,HP,ID2,IL10,ITGAV,ITGB3,JUN,KRT14,LOX,MAFF,MANF,MCL1,METTL23,MITF,M

ST1R,MT-CO3,MT-

ND1,MYC,NOS2,NOS3,NPM1,NRARP,P4HA1,P4HA2,PDK1,PKM,PPARA,PROM1,R3HCC1L,SERPINE1,SLC29A1,

SLC39A7,SOD2,SOX9,SP1,ST3GAL1,STAT3,STC2,TLR2,TMEM19,TMEM45A,TP53,TPI1,VIM

PDX1  transcription regulator Activated 2,523 0,00195

ACTG1,AKR1B1,AKR7A2,ATF3,ATG9A,CAMK2N1,CAT,CRELD2,CROT,CXCL2,CXCR4,DUSP5,FH,GALNT18,G

RN,ID2,IDH1,INSIG1,JUN,KAT7,LTA4H,MAN1A1,MAOB,MAP2,MITF,MT-

ND1,MYC,NQO1,PCNA,PCSK1,RSAD2,SPP1

IRF1 -1,049 transcription regulator Activated 2,51 0,000000224

B2M,CASP2,CCNB1,CD40,CDK2,CFB,CXCL10,CXCL16,CXCL2,CYBB,EIF4A3,ERAP1,FGL2,IFIT1,IFIT3,IL10,IL15,I

L18,IRF5,IRF7,IRF9,ISG15,JAK2,MX1,MYB,MYC,NOS2,ODC1,PCNA,PIGR,PLA2G16,PSME1,PSME2,RSAD2,SP1,S

TAT1,STAT2,STAT3,TLR3,TP53

CREM 1,344 transcription regulator Activated 2,457 0,00144
ABCA1,ACTC1,ANXA4,APOE,ATF3,BHLHE40,BTG2,CCNB1,CRABP2,CYP51A1,DUSP1,FOS,GADD45B,HLA-

DRA,HMGCS1,LSS,MCL1,MEST,MSMO1,MVK,NFIL3,NOS2,NPC2,PCSK1,Pln,RYR2,SIAH2,SLC16A1,SMC4

TCF7L2  transcription regulator Activated 2,438 0,0000136

ACAA1,ACADL,ACSL3,ADIPOR2,APOD,AQP9,ARAP2,BMP4,CAMK2N1,CARHSP1,CCNYL1,CREB3L2,CSRP1,C

TGF,CTNNAL1,CYP51A1,CYP7A1,DHCR24,DHRS7,DRAM2,ENTPD5,EPAS1,EPCAM,EPS15,ERBIN,EVI2B,FH,G2E

3,GJB1,GLTP,GLUL,GRAMD3,ID2,IDH1,IL10,KAT2B,LRRN1,MAN1A1,MTMR2,MYC,MYO6,NKAIN1,NPC1,NPC2

,PIGA,PPP1R16B,PRRG1,RALGDS,RCBTB1,RHOA,RNASE4,SDC2,SOX10,SPP1,STK17B,STRN,TBC1D14,TMEM12

5,TSPAN2,TWF1

TCF3 -1,449 transcription regulator Activated 2,437 0,000185

ACACB,ARSA,ATF3,AURKA,AZGP1,BCL6,CA2,CCNA2,CCNB1,CCNB2,CCNE2,CDC45,CDKN2C,CGREF1,CKM,

CTSV,GADD45B,HS3ST1,ID2,JUN,KIF11,KIF2C,KIF4A,KIT,KLHDC2,MAD2L1,MSMO1,MYC,MYCN,NFIL3,PLK4,

PTGS1,RACGAP1,RASSF4,RPS3A,SCIN,SEMA3G,SULT2B1,TCF3,TMEFF1,TOP2A,XRCC6

MXI1  transcription regulator Activated 2,397 0,000104 CCNB1,FOXM1,ID2,IFT20,IMPDH2,MYC,MYCN,ODC1

GATA1  transcription regulator Activated 2,395 0,000592

ANGPT2,BTG2,CA2,CALR,CD36,CDK2,CDKN2C,CDKN2D,CYBB,CYFIP1,F10,FYB,HHEX,ITGB3,KIT,LYZ,MCM3,

MITF,MSH2,MYB,MYC,MYCN,NCL,NFIL3,PCNA,PIM1,POLA2,POLD1,RAD54L,RFC4,RPL22,SCIN,SLC19A1,SLC

50A1,SPTB,SRC,SRM,TEK,TOP2A,UAP1,USP25
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NFKBIA 1,874 transcription regulator Activated 2,35 1,59E-08

AMPD3,AURKB,AZGP1,BCL3,BNIP3,BRF2,BTG2,CASP4,CCNA2,CCNB1,CCNE2,CD40,CD69,CDC45,CDC6,CDK2,

CDKN2D,CHI3L1,CHI3L2,COL1A2,CP,CRYAB,CSK,CTNNB1,CTSB,CTSZ,CXCL10,CXCL2,CXCR4,DAG1,DDIT3,E

RAP1,FGFR4,FOS,FOXM1,FSCN1,GADD45B,GADD45G,GRK5,GRN,HES1,HK2,ICAM1,IL10,IL15,IRX3,ISG15,ITGA

2,ITGAV,JUN,LCN2,LITAF,MR1,MT-CO3,MT-

CYB,MYC,NBR1,NFKBIA,NFKBIB,NFKBIE,NOS2,OGN,PCNA,PIM1,RABEP2,RELB,RGS4,RPS18,RPSA,S100A9,SC

FD1,SDC1,SOD1,SOD2,SOD3,SOX9,TFCP2L1,TIMP2,TLR2,TLR4,TNFAIP3,TP53,TRADD,USP9X,XIAP,XRCC6

ATF4 1,621 transcription regulator Activated 2,289 0,00534
ATF3,CA9,CALR,CANX,CSN2,CTNNB1,DDIT3,DDR2,HSP90B1,IGFBP7,JUN,KLF9,LALBA,LGALS3,MAP1LC3B,

MCL1,MID1IP1,NR1H3,OSMR,PCK2,SLC1A5,STAT3,STC2,TNFRSF12A,TNFSF11

SREBP2  transcription regulator Activated 2,262 0,0000324
ABCA1,CYB5A,CYP51A1,DBI,FADS2,FDPS,GTF2I,HES6,HMGCS1,IDH1,INSIG1,LSS,MSMO1,MVK,NSDHL,RDH1

1,SCD,SQLE,STARD4,TM7SF2

RBL1  transcription regulator Activated 2,208 0,000199
AURKB,CASP4,CCNA2,CDC6,CDK1,CDK2,FOS,HES1,MCM2,MCM3,MTOR,MYC,MYCN,NEK2,ORC1,PCNA,PPP

1R8,SKP2,TP53

NFKB1  transcription regulator Activated 2,204 0,00000292

ADORA1,AKR1B1,APOE,APP,B2M,BAMBI,BCL3,BTG2,CD40,CD59,CFB,CHI3L1,COL1A2,CREB3,CSN2,CTSB,CX

CL10,CXCL2,CYBB,DUSP1,FANCD2,FOS,FSCN1,GBP1,GRK5,ICAM1,IKBKG,IL10,IL18,ISG15,MAP3K8,MCL1,MY

B,MYC,NFKBIA,NFKBIB,NOS2,ORAI1,PRKCD,RACK1,RELB,SAR1A,SOD2,SOX9,STAT1,STIM1,SYTL1,TLR2,T

NFAIP3,TP53,XIAP

SMARCA4  transcription regulator Activated 2,161 0,00000259

ABCA1,ACTA1,ACTA2,ACTN4,AHR,AIM1,ALDH1A3,ALDH2,ARHGDIB,ASCC1,ATG9A,ATP2B4,AZGP1,BAM

BI,BMP4,C15orf52,C1orf54,CCNA2,CCNE2,CDC6,CDK2,CDKN2D,CHODL,CKM,CLDND1,CNTN1,CP,CTGF,CTSB,

CXCR4,DES,DYSF,ENTPD3,EPHB2,FADS3,FBLIM1,FCHSD2,FMO2,FOS,GADD45G,GBP1,GCHFR,GCLC,GSTO1,G

STP1,HLA-

DRA,HS3ST1,ICAM1,IFI30,IFIT1,IGFBP7,ITGAV,JUN,KCNJ2,KIT,LAMA3,LDB1,LGALS3,LOX,LRAT,LUM,MAFF

,MAOB,MT-

ND2,MXD1,MYB,MYC,NCALD,NFKBIZ,NPC2,NR2F2,NRIP3,NRP1,PAEP,PDK1,Pdlim3,PLPP3,RAC2,RBM4B,SDC

2,SERPINE1,SLC35G2,SOD3,SPP1,SRPX,ST3GAL1,STARD10,TAGLN,TAPBPL,TIMP2,TLR2,TMEM171,TNFSF13,

TUBB,TWF1,TXNRD1,UBD,UNC13D,VIM

STAT2 1,684 transcription regulator Activated 2,147 0,000299 CXCL10,GBP1,GHDC,IFIT1,IFIT3,IL10,IRF5,IRF7,IRF9,ISG15,MX1,RSAD2,SF3A1,USP18

E2F6  transcription regulator Activated 2,111 0,0000131
BRCA1,CDC45,CDC6,DCTN4,DHPS,GINS2,LIG1,MCM2,MCM3,MYC,PCLAF,POLA2,RAD51,RAD51AP1,RBBP4,R

FC4,RPA2,RYR2,SERPINE1

TOB1 1,099 transcription regulator Activated 2,111 0,0099 CCNA2,CDK2,HJURP,MBNL2,NBR1,PCBP4,SPDL1,TMED7,TP53,UBE2T,WDHD1

PPARGC1B  transcription regulator Activated 2,062 0,00568 ABCA1,ACACB,ACADL,ACADM,DHCR24,FDPS,HK2,LSS,MITF,MVK,PDK4,SCD,SQLE

MEF2D  transcription regulator Activated 2,03 0,0012 ACTA1,CCNE2,CDC6,CDK2,CKM,COL1A2,CTGF,FOS,JUN,MCM3,PCNA,PPARA

CCNE1 1,162 transcription regulator Inhibited -2,138 0,00143 BRCA1,CCNA2,CCNB1,CDC45,CDC6,MCM2,PCNA,TP53

CCND1  transcription regulator Inhibited -2,274 8,48E-12

ALDH1A3,AURKA,AZGP1,BRCA1,C7,CCNA2,CCNE2,CDC45,CDC6,CDCA7L,CDK2,CDKN2C,CENPH,CENPK,CE

P55,CLSPN,CPED1,DHCR24,DONSON,DTL,E2F7,E2F8,ESCO2,FAM83D,FOXM1,GAS2L3,HECTD2,HJURP,HOMER

2,HSPB8,ITGAV,ITGB3,KIF11,KIF20A,KIF20B,KIF2C,KIF4A,KLHL24,KRT14,MAFF,MELK,MESDC2,MFSD6,MT

MR1,MYC,PBLD,PCLAF,PCNA,PGR,PSMC3IP,PSRC1,PTPRC,RAB3B,RACGAP1,RAD51,RFC5,RMI2,SPC25,SPP1,

STARD4,STXBP1,TM7SF2,TP53,TP53INP1,TP53INP2,TSC2,UAP1,ZNF367

E2F3 -1,447 transcription regulator Inhibited -2,463 0,000479

ARPC1A,C1orf198,CCNA2,CCNB1,CCNB2,CDC45,CDC6,CDCA3,CDK1,CDK2,DAG1,HOXB9,MAD2L1,MAL2,MC

M2,MCM3,MYB,MYC,MYCN,ORC1,PCLAF,PCNA,POLA1,POLA2,PPP1R8,PTTG1,RAD51,SERPINE1,TOPBP1,UB

E2C

TRIM24  transcription regulator Inhibited -2,623 0,000074
CA2,CMPK2,CNOT6,CSRP1,CXCL10,DDX58,GLUL,IFI44,IFIT3,IRF7,IRF9,ISG15,JAK2,LGALS3,PCLAF,PRPS2,SER

PINE1,SPP1,STAT1,STAT2,TLR2,TRIM6-TRIM34,UBA7,USP18

WT1  transcription regulator Inhibited -2,624 0,0000606

AHCY,AMHR2,ANPEP,BTG2,CDC45,CDKN2C,CHAF1B,CIRBP,CKM,COL4A1,CTGF,CTNNB1,CTSV,CXCL10,FDP

S,GSR,HSP90B1,IL10,LGALS3,LMAN1,LSS,MCL1,MSLN,MYC,MYCN,NCSTN,NUCB1,ODC1,PCK2,PDIA4,RPL19,

SDC1,SERPINE1,SLC35G2,SOX9,SQLE,SQSTM1,TFAP2A,TRAP1,TSPAN5,TYROBP,VDR,YBX1,ZMIZ1,ZNF7

E2F1  transcription regulator Inhibited -2,705 1,84E-20

ACADL,ADIPOR2,ANGPT2,AURKA,AURKB,BMP4,BNIP3,BRCA1,BUB3,CA2,CALD1,CALR,CASP9,CCNA2,CC

NB1,CCNB2,CCNE2,CCNF,CCT2,CCT4,CDC20,CDC45,CDC6,CDK1,CDK2,CDKN2C,CDKN2D,CITED2,COPS8,CRA

BP2,CRYAB,CTNNB1,CTSB,CYB5A,DDIT3,DUSP1,E2F8,EIF3I,ERH,Esrra,EXOSC9,FANCD2,FOS,FOXM1,FOXO3,

HELLS,HES1,HNRNPK,HNRNPR,HSP90B1,HSPD1,HSPE1,ICAM1,KIT,KRT14,LACTB,LCK,LTA4H,MAD2L1,MAP

3K14,MAPK14,MCL1,MCM2,MCM3,MMP16,MSH2,MTBP,MYB,MYC,MYCN,NCL,NDUFC1,NFKBIA,NFKBIB,N

RP1,NUDC,ORC1,PCLAF,PCNA,PDCD5,PDK1,PDK4,PHB,PHC1,PLK2,POLA1,POLA2,POLD1,PPP1R8,PRPS2,RAC

GAP1,RAD51,RAD54L,RAN,RBBP4,RFC4,RFC5,RHOQ,RPA2,RSL1D1,SERPINE1,SMARCB1,SMC4,SOD2,SP1,SRP

RA,STK17B,STMN1,TCF3,TOP2A,TOPBP1,TP53,TP53INP1,TRAP1,TXNRD1,UCHL5,VIM,VRK1,ZNF672

RCAN1  transcription regulator Inhibited -2,752 0,00109 ACTA1,CCNA2,CCNF,CD36,FOS,ICAM1,MYH1,NOS3,SOD1

MYB -12,288 transcription regulator Inhibited -2,85 0,00165
ANPEP,BRCA1,CCNB1,CDK1,COL1A2,COL4A1,COPA,CXCR4,ERBIN,JUN,KIT,MYB,MYC,PCNA,POLA1,SLC1A5

,SLC25A3,SPP1,VAV1,VIM

MITF 2,231 transcription regulator Inhibited -3,059 2,07E-11

AIM1,ALCAM,APOE,ATP6V1C1,AURKB,BRCA1,CCNB1,CCNF,CD151,CDCA3,CDK2,CENPH,CENPO,CEP55,CH

AF1A,CTSK,DSN1,DSTYK,ESPL1,FANCA,FMOD,FOS,GPRIN1,HAUS8,HES1,ITPKB,KIF20A,KIF4A,KIFC1,KIT,L

GALS3,LIG1,MCM2,MICAL1,MITF,NCAPD2,NUF2,PIF1,POLD1,POLE2,PSEN2,PSMC3IP,RAB27A,RFC5,RHOQ,R

RAGD,SDC1,SEMA6A,SERPINE1,SLC7A8,SNW1,SOX10,SOX9,SPAG5,SPC25,STXBP1,TACC3,TFAP2A,TMEM25

1,TP53,UBE2C,VAT1



 

 
SUPPLEMENTARY MATERIAL 

 
 209 

 

 

 

 

Supplementary Table IV-S1. Summary of PIA enrichment analysis (adjusted p-value ≤ 0.05). 

pathway_name pathway_ID n_genes all_genes pvalue padj 

Systemic lupus 

erythematosus 
path:hsa05322 26 133 1.94E-08 6.40E-06 

Allograft rejection path:hsa05330 13 38 4.25E-01 7.01E+01 

Antigen processing and 

presentation 
path:hsa04612 16 77 1.62E+00 1.75E+02 

Autoimmune thyroid disease path:hsa05320 14 53 2.13E+00 1.75E+02 

Type I diabetes mellitus path:hsa04940 13 43 2.69E+00 1.78E+02 

Graft-versus-host disease path:hsa05332 12 41 4.34E+01 2.39E+03 

Viral myocarditis path:hsa05416 13 59 2.44E+02 1.15E+04 

Asthma path:hsa05310 10 31 1.43E+03 5.89E+03 

Staphylococcus aureus 
infection 

path:hsa05150 12 56 2.54E+03 8.87E+04 

Herpes simplex infection path:hsa05168 19 185 2.69E+03 8.87E+04 

Intestinal immune network 

for IgA production 
path:hsa04672 11 49 1.04E+04 3.13E+05 

Phagosome path:hsa04145 16 152 7.98E+04 2.19E+05 

Alcoholism path:hsa05034 17 180 1.24E+05 3.14E+06 

Inflammatory bowel disease 

(IBD) 
path:hsa05321 11 65 2.62E+05 6.18E+06 

Cell adhesion molecules 

(CAMs) 
path:hsa04514 15 144 3.27E+05 7.19E+06 

Epstein-Barr virus infection path:hsa05169 17 201 6.76E+05 1.39E+07 

Th1 and Th2 cell 

differentiation 
path:hsa04658 11 92 1.12E+07 2.17E+08 

Leishmaniasis path:hsa05140 10 74 1.34E+07 2.46E+08 

E2F2  transcription regulator Inhibited -3,13 0,00000963
CCNA2,CCNB1,CCNB2,CDC45,CDC6,CDK1,CDKN2C,CDKN2D,MCM2,MCM3,MYB,MYC,MYCN,ORC1,PCNA,PO

LA1,RAD51,SERPINE1,TOPBP1,TP53

NKX2-3  transcription regulator Inhibited -3,201 0,000183

ANGPT2,ANGPTL4,ANKRD37,ARHGDIB,BATF2,BMP4,BTG1,C19orf66,CCNB2,CD36,CEP55,CMPK2,CRYAB,CX

ADR,CXCL16,DDX58,F2RL1,GALNT15,GBP1,GHR,HMMR,HNRNPA0,MAP2,MYD88,MYO5A,NOS3,NR2F1,PARP

10,PARP14,PARP9,RPL23,SAMD9,SRPX,STAT1,STAT2,TXNDC12,UACA,UBA7,UBE2L6,USP18,ZC3HAV1

TAL1 1,003 transcription regulator Inhibited -3,282 0,00304

ARSA,AZGP1,BCL6,CCNB1,CD69,CENPU,DSCC1,GALNT7,GUCY1A3,HELLS,ID2,IL10RA,JUN,KIF20A,KIT,LMO1

,MAP2,MAP3K1,MCM2,MELK,MEST,MSLN,MYB,MYC,NCAPG,NFKBIZ,RASD1,RIPK4,RPS3A,TMEFF1,TNFAI

P3,UBXN1,XRCC6

FOXM1 -3,416 transcription regulator Inhibited -3,675 0,0000112
AURKB,CCNA2,CCNB1,CCNB2,CCNE2,CCNF,CDC20,CDK1,CDK2,CTNNB1,CYP7A1,FOS,FOXM1,KIF20A,LOX,

MYC,NEK2,Nes,PCNA,PLK4,PROM1,SKP2,STAT3,STMN1,TOP2A,TP53,TWIST2,VCAN,VIM

TBX2 -1,445 transcription regulator Inhibited -4,537 1,36E-09
ASF1B,ATF3,AURKA,AURKB,BHLHE40,CCNA2,CCNB1,CCNL1,CDC6,CDCA3,CDCA5,CDK1,CDKN2C,CHAF1B,

CKAP2,DDIT3,E2F7,E2F8,FOXM1,HELLS,LIG1,MAD2L1,MCM2,MXD3,NCAPD2,NFIL3,PKMYT1,SEPT10

MYC -3,001 transcription regulator Inhibited -5,543 8,68E-23

ABCA1,ABCC3,ABCD1,ACAT1,ACSS1,ACTA1,ACTN4,ACVR1,AHCY,ALCAM,ALDH18A1,ANGPT2,ANXA4,A

NXA5,APP,ARHGAP25,ATPIF1,AURKB,BCL6,BRCA1,CAMK2N1,CANX,CASP9,CCNA2,CCNB1,CCNB2,CCNE2,

CCT3,CD151,CD47,CD69,CDC20,CDK1,CDK2,CHRNB1,CHST15,CITED1,COL1A2,COL4A1,COL4A2,CRABP2,CRY

AB,CSRP2,CTNNB1,CTSB,CTSV,CXCL10,DBI,DCTPP1,DDIT3,DKC1,DNPH1,DSP,DUSP1,DUSP5,EEF2,EIF3D,EPC

AM,ERAP1,EXOSC7,EZH1,FADS2,FAM129A,FAP,FBL,FMOD,FOS,FOXM1,FRZB,GADD45B,GADD45G,GAMT,G

CLC,GFPT1,GGH,GGT1,GLG1,GLS,GLUL,GLYR1,GOLGA2,GPC1,GRHL3,GSR,H2AFZ,HERC5,HES1,HK2,HNRNPA1,

HSPD1,HSPE1,ICAM1,ID2,IDH1,IDH2,IFIT1,IL10,IL17RB,IMPA2,IQGAP2,IREB2,IRF7,IRF9,IRX3,JUN,KAT2A,KRT

14,LOX,LRRN1,LUM,LYZ,MAD2L1,MAN2A1,MAX,MCL1,METAP2,MGAT1,MITF,MOGS,MRE11A,MSH2,MTB

P,MYC,MYCN,MYL9,MYO1C,NCL,NFKBIA,NOLC1,NOP56,NPM1,NQO1,NRP1,NUCB1,NUDC,ODC1,PAICS,PAK1

,PARP1,PCNA,PDK1,Pdlim3,PFAS,PHB,PHB2,PKM,POLD1,POLR1B,POLR2G,PPARA,PPARD,PPAT,PRDX3,PRM

T1,PROM1,PTBP1,PTPRC,RAB40B,RAD51,RARG,RBBP4,RBBP7,RHOA,RHPN1,RPL13,RPL19,RPL22,RPL23,RPL26

,RPL27,RPL3,RPL30,RPL35,RPL5,RPL6,RPS18,RPS19,RPS20,RPS6,RRM2B,RSAD2,SDCBP,SERPINE1,SKP2,SLC16A

1,SLC1A5,SNRPD1,SNRPN,SOD2,SOX9,SPARC,SPP1,SRM,ST3GAL1,STMN1,SUMO2,SUMO3,TAF1D,TAT,TCF3,

TIMP2,TLN1,TNFRSF12A,TNFSF11,TP53,TPI1,TRAP1,TSC2,TWIST2,TXNRD1,UBE2C,UBE2I,USP18,VDAC2,VIM

,VPS72,XPO1,YBX1,ZFP36L1

MYCN -3,43 transcription regulator Inhibited -5,901 1,46E-17

ABCA1,ABCA3,ABCC3,ABCD1,ACTG1,ACTN4,B2M,CITED2,COL4A1,CTGF,E2F5,EEF1G,EEF2,EZH1,FAU,HK2,

HSPD1,ID2,IGFBP7,ITGA2,MAGT1,MRE11A,MYCN,NCL,NPM1,NUCB1,ODC1,PDIA4,PDK1,PHB,PSMB7,RBBP4,

RBBP7,RNF11,RPL11,RPL12,RPL13,RPL18,RPL19,RPL22,RPL23,RPL26,RPL27,RPL29,RPL3,RPL30,RPL35,RPL37,RPL

37A,RPL38,RPL4,RPL5,RPL6,RPS13,RPS17,RPS19,RPS20,RPS25,RPS26,RPS28,RPS3A,RPS4X,RPS5,RPS6,RPS8,SDC

2,SERPINE1,SORD,SPARC,TAGLN,TIMP2,TMED9,TNFRSF1A,TP53,TPI1,TUBB,TUFM,VIM,ZFAND5,ZYX
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Human T-cell leukemia 

virus 1 infection 
path:hsa05166 16 219 1.54E+07 2.67E+07 

Viral carcinogenesis path:hsa05203 15 201 2.96E+07 4.89E+08 

Th17 cell differentiation path:hsa04659 11 107 5.34E+07 8.39E+08 

Rheumatoid arthritis path:hsa05323 10 90 8.73E+07 1.31E+09 

Toxoplasmosis path:hsa05145 11 113 9.28E+07 1.33E+09 

Hematopoietic cell lineage path:hsa04640 10 97 1.76E+08 2.42E+07 

Influenza A path:hsa05164 12 171 9.36E+07 0.000123590160476991 

Tuberculosis path:hsa05152 11 179 7.67E+09 0.000973268639997763 

Human cytomegalovirus 

infection 
path:hsa05163 10 225 0.00207695741895569 0.0253850351205695 
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