A field experiment was performed on spearmint (Mentha spicata L.) under different irrigation regimes in a hilly area of Southern Italy. Objectives of the study include evaluating the physiological and biometrical response of mint from plant establishment up to its complete maturation, as well as the yield composition in essential oil at two different dates. Increasing levels of water stress affected later developing leaves and plant’s water status and net photosynthesis (from the beginning of stress (DAT 63), while affecting negatively the biometric response very soon and significantly from 35 DAT. Photosynthesis limitation played a critical role from DAT 53 on, namely later, in the harvest period (DAT 35–70). Under severe water stress, crop restricted water losses by modulating stomatal closure and, at harvest, showing lowered mesophyll conductance. Irrigation treatments did not affect the concentration of organic compounds, while the yield of essential oils was negatively affected by water stress due to reduced crop growth, in terms of total and leaf biomass, leaf area index (LAI) and crop height.

Evaluation of the Effect of Irrigation on Biometric Growth, Physiological Response, and Essential Oil of Mentha spicata (L.)

Stefano Marino
Primo
Writing – Original Draft Preparation
;
Uzair Ahmad
Data Curation
;
Arturo Alvino
Ultimo
Writing – Original Draft Preparation
2019-01-01

Abstract

A field experiment was performed on spearmint (Mentha spicata L.) under different irrigation regimes in a hilly area of Southern Italy. Objectives of the study include evaluating the physiological and biometrical response of mint from plant establishment up to its complete maturation, as well as the yield composition in essential oil at two different dates. Increasing levels of water stress affected later developing leaves and plant’s water status and net photosynthesis (from the beginning of stress (DAT 63), while affecting negatively the biometric response very soon and significantly from 35 DAT. Photosynthesis limitation played a critical role from DAT 53 on, namely later, in the harvest period (DAT 35–70). Under severe water stress, crop restricted water losses by modulating stomatal closure and, at harvest, showing lowered mesophyll conductance. Irrigation treatments did not affect the concentration of organic compounds, while the yield of essential oils was negatively affected by water stress due to reduced crop growth, in terms of total and leaf biomass, leaf area index (LAI) and crop height.
https://www.mdpi.com/2073-4441/11/11/2264
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/89973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact