We present a first investigation about the non-linear flow properties and transient orientational-order fluctuations observed in the shear-thinning lecithin–water–cyclohexanewormlike micellar system at a concentration near to the zero-shear isotropic–nematic phase transition. From rheological measurements the stress plateau was found shifted to very low values of the applied shear rate g_ , compared to most of the concentrated living polymer systemsreported in the literature. Rheo-small angle neutron scattering (Rheo-SANS) experiments performed in the flow-vorticity plane revealed periodical fluctuations of both the order parameter P2 and the angular phi from the vorticity axis as determined from the scattering peaks The periods of the oscillations were not found to depend on imposed g_. A theoretical model was also developed to explain the oscillatory dynamics of the shear-induced nematic order parameter in terms of the presence of standing waves of the director orientation profile along the circumference of the Couette cell. The experimental results of the periodic order parameter fluctuations together with their theoretical modelling shed significant new insights on the shear banding phenomenon, particularly its microscopic mechanism.

We present a first investigation about the non-linear flow properties and transient orientational-order fluctuations observed in the shear-thinning lecithin-water-cyclohexane wormlike micellar system at a concentration near to the zero-shear isotropic-nematic phase transition. From rheological measurements the stress plateau was found shifted to very low values of the applied shear rate , compared to most of the concentrated living polymer systems reported in the literature. Rheo-small angle neutron scattering (Rheo-SANS) experiments performed in the flow-vorticity plane revealed periodical fluctuations of both the order parameter P 2 and the angular deviation from the vorticity axis as determined from the scattering peaks. The periods of the oscillations were not found to depend on imposed . A theoretical model was also developed to explain the oscillatory dynamics of the shear-induced nematic order parameter in terms of the presence of standing waves of the director orientation profile along the circumference of the Couette cell. The experimental results of the periodic order parameter fluctuations together with their theoretical modelling shed significant new insights on the shear banding phenomenon, particularly its microscopic mechanism. © 2010 the Owner Societies.

Ordering fluctuations in a shear-banding wormlike micellar system

Angelico R;Ambrosone L;
2010-01-01

Abstract

We present a first investigation about the non-linear flow properties and transient orientational-order fluctuations observed in the shear-thinning lecithin-water-cyclohexane wormlike micellar system at a concentration near to the zero-shear isotropic-nematic phase transition. From rheological measurements the stress plateau was found shifted to very low values of the applied shear rate , compared to most of the concentrated living polymer systems reported in the literature. Rheo-small angle neutron scattering (Rheo-SANS) experiments performed in the flow-vorticity plane revealed periodical fluctuations of both the order parameter P 2 and the angular deviation from the vorticity axis as determined from the scattering peaks. The periods of the oscillations were not found to depend on imposed . A theoretical model was also developed to explain the oscillatory dynamics of the shear-induced nematic order parameter in terms of the presence of standing waves of the director orientation profile along the circumference of the Couette cell. The experimental results of the periodic order parameter fluctuations together with their theoretical modelling shed significant new insights on the shear banding phenomenon, particularly its microscopic mechanism. © 2010 the Owner Societies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/7822
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact