A hybrid solar-assisted trigeneration system is analyzed in this paper. The system is composed of a 20 m2 solar field of evacuated tube collectors, a natural gas fired micro combined heat and power system delivering 12.5 kW of thermal power, an absorption heat pump (AHP) with a nominal cooling power of 17.6 kW, two storage tanks (hot and cold) and an electric auxiliary heater (AH). The plant satisfies the energy demand of an office building located in Naples (Southern Italy). The electric energy of the cogenerator is used to meet the load and auxiliaries electric demand; the interactions with the grid are considered in cases of excess or over requests. This hybrid solution is interesting for buildings located in cities or historical centers with limited usable roof surface to install a conventional solar heating and cooling (SHC) system able to achieve high solar fraction (SF). The results of dynamic simulation show that a tilt angle of 30° maximizes the SF of the system on annual basis achieving about 53.5%. The influence on the performance of proposed system of the hot water storage tank (HST) characteristics (volume, insulation) is also studied. It is highlighted that the SF improves when better insulated and bigger HSTs are considered. A maximum SF of about 58.2% is obtained with a 2000 L storage, whereas the lower thermal losses take place with a better insulated 1000 L tank.

Analysis of a hybrid solar-assisted trigeneration system

Tariello, Francesco
2016-01-01

Abstract

A hybrid solar-assisted trigeneration system is analyzed in this paper. The system is composed of a 20 m2 solar field of evacuated tube collectors, a natural gas fired micro combined heat and power system delivering 12.5 kW of thermal power, an absorption heat pump (AHP) with a nominal cooling power of 17.6 kW, two storage tanks (hot and cold) and an electric auxiliary heater (AH). The plant satisfies the energy demand of an office building located in Naples (Southern Italy). The electric energy of the cogenerator is used to meet the load and auxiliaries electric demand; the interactions with the grid are considered in cases of excess or over requests. This hybrid solution is interesting for buildings located in cities or historical centers with limited usable roof surface to install a conventional solar heating and cooling (SHC) system able to achieve high solar fraction (SF). The results of dynamic simulation show that a tilt angle of 30° maximizes the SF of the system on annual basis achieving about 53.5%. The influence on the performance of proposed system of the hot water storage tank (HST) characteristics (volume, insulation) is also studied. It is highlighted that the SF improves when better insulated and bigger HSTs are considered. A maximum SF of about 58.2% is obtained with a 2000 L storage, whereas the lower thermal losses take place with a better insulated 1000 L tank.
http://www.mdpi.com/1996-1073/9/9/705/pdf
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/75372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact