Ecologists are interested in prediction of potential distribution of species in suitable areas, essential for planning conservation and management strategies. Unfortunately, often the only available information in such studies is the true presence of the species at few locations of the study area and the associated environmental covariates over the entire area, referred as presence-only data. We propose a Bayesian approach to estimate logistic linear regressions adapted to presence-only data through the introduction of a random approximation of the correction factor in the adjusted logistic model that allows us to overcome the need to know a priori the prevalence of the species.

Data Augmentation Approach in Bayesian Modelling of Presence-only Data

DIVINO, Fabio;
2011

Abstract

Ecologists are interested in prediction of potential distribution of species in suitable areas, essential for planning conservation and management strategies. Unfortunately, often the only available information in such studies is the true presence of the species at few locations of the study area and the associated environmental covariates over the entire area, referred as presence-only data. We propose a Bayesian approach to estimate logistic linear regressions adapted to presence-only data through the introduction of a random approximation of the correction factor in the adjusted logistic model that allows us to overcome the need to know a priori the prevalence of the species.
http://www.sciencedirect.com/science/article/pii/S1878029611001356
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11695/7488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact