In Braess paradox the addiction of an extra resource creates a social dilemma in which the individual rationality leads to collective irrationality. In the literature, the dynamics has been analyzed when considering impulsive commuters, i.e., those who switch choice regardless of the actual difference between costs. We analyze a dynamical version of the paradox with nonimpulsive commuters, who change road proportionally to the cost difference. When only two roads are available, we provide a rigorous proof of the existence of a unique fixed point showing that it is globally attracting even if locally unstable. When a new road is added the system becomes discontinuous and two-dimensional. We prove that still a unique fixed point exists, and its global attractivity is numerically evidenced, also when the fixed point is locally unstable. Our analysis adds a new insight in the understanding of dynamics in social dilemma.

Dynamics in Braess paradox with nonimpulsive commuters

DAL FORNO, ARIANNA;
2015-01-01

Abstract

In Braess paradox the addiction of an extra resource creates a social dilemma in which the individual rationality leads to collective irrationality. In the literature, the dynamics has been analyzed when considering impulsive commuters, i.e., those who switch choice regardless of the actual difference between costs. We analyze a dynamical version of the paradox with nonimpulsive commuters, who change road proportionally to the cost difference. When only two roads are available, we provide a rigorous proof of the existence of a unique fixed point showing that it is globally attracting even if locally unstable. When a new road is added the system becomes discontinuous and two-dimensional. We prove that still a unique fixed point exists, and its global attractivity is numerically evidenced, also when the fixed point is locally unstable. Our analysis adds a new insight in the understanding of dynamics in social dilemma.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/65650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact