In this work, we investigate the dynamics of a piecewise linear 2D discontinuous map modeling a simple network showing the Braess paradox. This paradox represents an example in which adding a new route to a specific congested transportation network makes all the travelers worse off in terms of their individual travel time. In the particular case in which the modeled network corresponds to a binary choice situation, the map is defined on two partitions and its dynamics has already been described. In the general case corresponding to a ternary choice, a third partition appears leading to significantly more complex bifurcation structures formed by border collision bifurcations of stable cycles with points located in all three partitions. Considering a map taking a constant value on one of the partitions, we provide a first systematic description of possible dynamics for this case.
Dynamics of a 2D Piecewise Linear Braess Paradox Model: Effect of the Third Partition
DAL FORNO, ARIANNA;
2015-01-01
Abstract
In this work, we investigate the dynamics of a piecewise linear 2D discontinuous map modeling a simple network showing the Braess paradox. This paradox represents an example in which adding a new route to a specific congested transportation network makes all the travelers worse off in terms of their individual travel time. In the particular case in which the modeled network corresponds to a binary choice situation, the map is defined on two partitions and its dynamics has already been described. In the general case corresponding to a ternary choice, a third partition appears leading to significantly more complex bifurcation structures formed by border collision bifurcations of stable cycles with points located in all three partitions. Considering a map taking a constant value on one of the partitions, we provide a first systematic description of possible dynamics for this case.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.