In this paper, three alternative layouts (scenarios) of an innovative solar-assisted hybrid desiccant-based air handling unit (AHU) are investigated through dynamic simulations. Performance is evaluated with respect to a reference system and compared to those of the innovative plant without modifications. For each scenario, different collector types, surfaces and tilt angles are considered. The effect of the solar thermal energy surplus exploitation for other low-temperature uses is also investigated. The first alternative scenario consists of the recovery of the heat rejected by the condenser of the chiller to pre-heat the regeneration air. The second scenario considers the pre-heating of regeneration air with the warmer regeneration air exiting the desiccant wheel (DW). The last scenario provides pre-cooling of the process air before entering the DW. Results reveal that the plants with evacuated solar collectors (SC) can ensure primary energy savings (15%-24%) and avoid equivalent CO2 emissions (14%-22%), about 10 percentage points more than those with flat-plate collectors, when the solar thermal energy is used only for air conditioning and the collectors have the best tilt angle. If all of the solar thermal energy is considered, the best results with evacuated tube collectors are approximately 73% in terms of primary energy saving, 71% in terms of avoided equivalent CO2 emissions and a payback period of six years.

Performance assessment of a solar-assisted desiccant-based air handling unit considering different scenarios

TARIELLO, Francesco;VANOLI, GIUSEPPE PETER
2016-01-01

Abstract

In this paper, three alternative layouts (scenarios) of an innovative solar-assisted hybrid desiccant-based air handling unit (AHU) are investigated through dynamic simulations. Performance is evaluated with respect to a reference system and compared to those of the innovative plant without modifications. For each scenario, different collector types, surfaces and tilt angles are considered. The effect of the solar thermal energy surplus exploitation for other low-temperature uses is also investigated. The first alternative scenario consists of the recovery of the heat rejected by the condenser of the chiller to pre-heat the regeneration air. The second scenario considers the pre-heating of regeneration air with the warmer regeneration air exiting the desiccant wheel (DW). The last scenario provides pre-cooling of the process air before entering the DW. Results reveal that the plants with evacuated solar collectors (SC) can ensure primary energy savings (15%-24%) and avoid equivalent CO2 emissions (14%-22%), about 10 percentage points more than those with flat-plate collectors, when the solar thermal energy is used only for air conditioning and the collectors have the best tilt angle. If all of the solar thermal energy is considered, the best results with evacuated tube collectors are approximately 73% in terms of primary energy saving, 71% in terms of avoided equivalent CO2 emissions and a payback period of six years.
http://www.mdpi.com/1996-1073/9/9/724/pdf
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/63795
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact