We propose a procedure to detect significant changes in forest spatial patterns and relevant scales. Our approach consists of four sequential steps. First, based on a series of multi-temporal forest maps, a set of geographic windows of increasing extents are extracted. Second, for each extent and date, specific stochastic simulations that replicate real-world spatial pattern characteristics are run. Third, by computing pattern metrics on both simulated and real maps, their empirical distributions and confidence intervals are derived. Finally, multi-temporal scalograms are built for each metric. Based on cover maps (1954, 2011) with a resolution of 10 m we analyze forest pattern changes in a central Apennines (Italy) reserve at multiple spatial extents (128, 256 and 512 pixels). We identify three types of multi-temporal scalograms, depending on pattern metric behaviors, describing different dynamics of natural reforestation process. The statistical distribution and variability of pattern metrics at multiple extents offers a new and powerful tool to detect forest variations over time. Similar procedures can (i) help to identify significant changes in spatial patterns and provide the bases to relate them to landscape processes; (ii) minimize the bias when comparing pattern metrics at a single extent and (iii) be extended to other landscapes and scales

Quantifying Forest Spatial Pattern Trends at Multiple Extents: An Approach to Detect Significant Changes at Different Scales

DI MARTINO, Paolo;CARRANZA, Maria Laura
2014-01-01

Abstract

We propose a procedure to detect significant changes in forest spatial patterns and relevant scales. Our approach consists of four sequential steps. First, based on a series of multi-temporal forest maps, a set of geographic windows of increasing extents are extracted. Second, for each extent and date, specific stochastic simulations that replicate real-world spatial pattern characteristics are run. Third, by computing pattern metrics on both simulated and real maps, their empirical distributions and confidence intervals are derived. Finally, multi-temporal scalograms are built for each metric. Based on cover maps (1954, 2011) with a resolution of 10 m we analyze forest pattern changes in a central Apennines (Italy) reserve at multiple spatial extents (128, 256 and 512 pixels). We identify three types of multi-temporal scalograms, depending on pattern metric behaviors, describing different dynamics of natural reforestation process. The statistical distribution and variability of pattern metrics at multiple extents offers a new and powerful tool to detect forest variations over time. Similar procedures can (i) help to identify significant changes in spatial patterns and provide the bases to relate them to landscape processes; (ii) minimize the bias when comparing pattern metrics at a single extent and (iii) be extended to other landscapes and scales
http://www.mdpi.com/2072-4292/6/10/9298
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/6266
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact