The standard corneal collagen cross-linking (CXL), that includes the removal of corneal epithelium to permit adequate penetration of riboflavin in the stroma, is an established procedure to halting keratoconus progression. However, as epithelial removal may cause postoperative pain and an increased risk of corneal infection, new therapeutic approaches have been proposed. Iontophoresis is a recently developed non-invasive technique which provides the use of electrical current during CXL to enhance transepithelial penetration of riboflavin into the corneal stroma. Here, we describe for the first time the morphological changes of the corneal stromal compartment in a patient with keratoconus who underwent in vivo iontophoresis-assisted CXL (ionto-CXL) before full-thickness corneal transplantation. Immunohistochemistry for type I collagen and CD34 was performed to investigate the stromal distribution of collagen fibers and keratocytes, respectively. The histology of ionto-CXL-treated keratoconic cornea, collected 6 months after the intervention, was compared with that of healthy corneas and either untreated or standard CXL-treated keratoconic corneas. An attempt to restore a normal stromal architecture was observed in the ionto-CXL-treated cornea compared with untreated keratoconic corneas. In particular, the ionto-CXL-treated cornea showed a parallel distribution of type I collagen fibers, although fiber interweaving appeared less organized than in healthy corneas and standard CXL-treated keratoconic corneas. Moreover, the distribution of CD34-positive keratocytes was improved in keratoconic corneas following ionto-CXL treatment, though a scattered CD34 immunoreactivity was still noticeable in the subepithelial stroma. This study provides histological evidence that ionto-CXL may represent a non-invasive alternative in the management of progressive keratoconus in adults.

A case of in vivo iontophoresis-assisted corneal collagen cross-linking for keratoconus: An immunohistochemical study

SGAMBATI, Eleonora;
2017-01-01

Abstract

The standard corneal collagen cross-linking (CXL), that includes the removal of corneal epithelium to permit adequate penetration of riboflavin in the stroma, is an established procedure to halting keratoconus progression. However, as epithelial removal may cause postoperative pain and an increased risk of corneal infection, new therapeutic approaches have been proposed. Iontophoresis is a recently developed non-invasive technique which provides the use of electrical current during CXL to enhance transepithelial penetration of riboflavin into the corneal stroma. Here, we describe for the first time the morphological changes of the corneal stromal compartment in a patient with keratoconus who underwent in vivo iontophoresis-assisted CXL (ionto-CXL) before full-thickness corneal transplantation. Immunohistochemistry for type I collagen and CD34 was performed to investigate the stromal distribution of collagen fibers and keratocytes, respectively. The histology of ionto-CXL-treated keratoconic cornea, collected 6 months after the intervention, was compared with that of healthy corneas and either untreated or standard CXL-treated keratoconic corneas. An attempt to restore a normal stromal architecture was observed in the ionto-CXL-treated cornea compared with untreated keratoconic corneas. In particular, the ionto-CXL-treated cornea showed a parallel distribution of type I collagen fibers, although fiber interweaving appeared less organized than in healthy corneas and standard CXL-treated keratoconic corneas. Moreover, the distribution of CD34-positive keratocytes was improved in keratoconic corneas following ionto-CXL treatment, though a scattered CD34 immunoreactivity was still noticeable in the subepithelial stroma. This study provides histological evidence that ionto-CXL may represent a non-invasive alternative in the management of progressive keratoconus in adults.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/61181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact