Chronic Obstructive Pulmonary disease (COPD) is an inflammatory syndrome that represents an increasing health problem, especially in the elderly population. Drug therapies are symptomatic and inadequate to contrast disease progression and mortality. Thus, there is an urgent need to clarify the molecular mechanisms responsible for this condition in order to identify new biomarkers and therapeutic targets. Processes including oxidant/antioxidant, protease/antiprotease, and proliferative/antiproliferative balance and control of inflammatory response become dysfunctional during aging as well as in COPD. Recently it was suggested that Sirtuin 1 (SIRT1), an antiaging molecule involved in the response to oxidative stress and chronic inflammation, is implicated in both development and progression of COPD. The present review focuses on the involvement of SIRT1 in the regulation of redox state, inflammation, and premature senescence, all crucial characteristics of COPD phenotypes. Recent evidence corroborating the statement of the "aging theory for COPD" was also discussed.

Sirtuin 1 and aging theory for chronic obstructive pulmonary disease.

CORBI, Graziamaria;
2015-01-01

Abstract

Chronic Obstructive Pulmonary disease (COPD) is an inflammatory syndrome that represents an increasing health problem, especially in the elderly population. Drug therapies are symptomatic and inadequate to contrast disease progression and mortality. Thus, there is an urgent need to clarify the molecular mechanisms responsible for this condition in order to identify new biomarkers and therapeutic targets. Processes including oxidant/antioxidant, protease/antiprotease, and proliferative/antiproliferative balance and control of inflammatory response become dysfunctional during aging as well as in COPD. Recently it was suggested that Sirtuin 1 (SIRT1), an antiaging molecule involved in the response to oxidative stress and chronic inflammation, is implicated in both development and progression of COPD. The present review focuses on the involvement of SIRT1 in the regulation of redox state, inflammation, and premature senescence, all crucial characteristics of COPD phenotypes. Recent evidence corroborating the statement of the "aging theory for COPD" was also discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/5985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 34
social impact