An already existing large volume of work on kinematics documents a reduction of step length during unusual gaits, such as backward walking. This is mainly explained in terms of modifications of some biomechanical properties. In the present study, we propose that the proprioceptive information from the knee may be involved in this change of motor strategy. Specifically, we show that a non-automated condition such as backward walking can elicit different motor strategies in subjects with reduced proprioceptive feedback after anterior cruciate ligament lesion (ACL). For this purpose, the kinematic parameters during forward and backward walking in subjects with ACL deficit were compared to two control groups: a group with intact ACL and a group with surgically reconstructed ACL. The knee proprioception was tested measuring the threshold for detection of passive knee motion. Subjects were asked to walk on a level treadmill at five different velocities (1-5km/h) in forward and backward direction, thereby calculating the cadence and step length. Results showed that forward walking parameters were largely unaffected in subjects with ACL damage. However, they failed to reduce step length during backward walking, a correction that was normally observed in all control subjects and in subjects with normal proprioceptive feedback after ACL reconstruction. The main result of the present study is that knee proprioception is an important signal used by the brain to reduce step length during the backward gait. This can have a significant impact on clinical evaluation and rehabilitation.

The kinematic control during the backward gait and knee proprioception: Insights from lesions of the anterior cruciate ligament

VIGGIANO, Davide;CORONA, Katia;CERCIELLO, SIMONE;VASSO, MICHELE;SCHIAVONE PANNI, Alfredo
2014

Abstract

An already existing large volume of work on kinematics documents a reduction of step length during unusual gaits, such as backward walking. This is mainly explained in terms of modifications of some biomechanical properties. In the present study, we propose that the proprioceptive information from the knee may be involved in this change of motor strategy. Specifically, we show that a non-automated condition such as backward walking can elicit different motor strategies in subjects with reduced proprioceptive feedback after anterior cruciate ligament lesion (ACL). For this purpose, the kinematic parameters during forward and backward walking in subjects with ACL deficit were compared to two control groups: a group with intact ACL and a group with surgically reconstructed ACL. The knee proprioception was tested measuring the threshold for detection of passive knee motion. Subjects were asked to walk on a level treadmill at five different velocities (1-5km/h) in forward and backward direction, thereby calculating the cadence and step length. Results showed that forward walking parameters were largely unaffected in subjects with ACL damage. However, they failed to reduce step length during backward walking, a correction that was normally observed in all control subjects and in subjects with normal proprioceptive feedback after ACL reconstruction. The main result of the present study is that knee proprioception is an important signal used by the brain to reduce step length during the backward gait. This can have a significant impact on clinical evaluation and rehabilitation.
http://www.degruyter.com/view/j/hukin.2012.35.issue-1/issue-files/hukin.2012.35.issue-1.xml
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11695/59577
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact