Objectives: Aim of the research is to compare the orthodontic appliances fabricated by using Rapid Prototyping (RP) systems, in particular 3D printers, with those manufactured by using Computer Numerical Control (CNC) milling machines. 3D Printing is today a well-accepted technology to fabricate orthodontic aligners by using the thermoforming process, instead the potential of CNC systems in dentistry have not yet been sufficiently explored. Materials and methods: One patient, with mal-positioned maxillary central and lateral incisors, was initially selected. In the computer aided virtual planning was defined that, for the treatment, the patient needed to wear a series of 7 removable orthodontic appliances (ROA) over a duration of 21 weeks, with one appliance for every 3 weeks. A non-contact Reverse Engineering (RE) structured-light 3D scanner was used to create the 3D STL model of the impression of the patient's mouth. Numerical FEM simulations were performed varying the position of applied forces (discrete and continuous forces) on the same model, simulating, in this way, 3 models with slice thickness of 0.2 mm, 0.1 mm (RP staircase effect) and without slicing (ideal case). To define the areas of application of forces, two configuration “i” and “i-1” of the treatment were overlapped. 6 patients to which for three steps (3rd, 4th and 5th step) were made to wear aligners fabricated starting from physical models by 3D printing (3DP-ROA) and afterwards, for the next steps (6th, 7th and 8th step), aligners fabricated starting from physical models by CNC milling machine (CNC-ROA), were selected. Results: For the 6 patients wearing the CNC-ROA, it was observed a best fitting of the aligner to the teeth and a more rapid teeth movement than the 3DP-ROA (2 weeks compared to 3 weeks for every appliance). FEM simulations showed a more uniform stress distribution for CNC-ROA than 3DP-ROA. Conclusions: In this research, 6 different case studies and CAD-FEM simulations showed that, to fabricate an efficient clear and removable orthodontic aligner, it is necessary to consider a compromise of several factors. A lower staircase effect (lower layer thickness) and a higher physical prototype accuracy allow a better control of tooth movement.
A COMPARISON BETWEEN CUSTOMIZED CLEAR AND REMOVABLE ORTHODONTIC APPLIANCES MANUFACTURED USING RP AND CNC TECHNIQUES
GERBINO, Salvatore;
2013-01-01
Abstract
Objectives: Aim of the research is to compare the orthodontic appliances fabricated by using Rapid Prototyping (RP) systems, in particular 3D printers, with those manufactured by using Computer Numerical Control (CNC) milling machines. 3D Printing is today a well-accepted technology to fabricate orthodontic aligners by using the thermoforming process, instead the potential of CNC systems in dentistry have not yet been sufficiently explored. Materials and methods: One patient, with mal-positioned maxillary central and lateral incisors, was initially selected. In the computer aided virtual planning was defined that, for the treatment, the patient needed to wear a series of 7 removable orthodontic appliances (ROA) over a duration of 21 weeks, with one appliance for every 3 weeks. A non-contact Reverse Engineering (RE) structured-light 3D scanner was used to create the 3D STL model of the impression of the patient's mouth. Numerical FEM simulations were performed varying the position of applied forces (discrete and continuous forces) on the same model, simulating, in this way, 3 models with slice thickness of 0.2 mm, 0.1 mm (RP staircase effect) and without slicing (ideal case). To define the areas of application of forces, two configuration “i” and “i-1” of the treatment were overlapped. 6 patients to which for three steps (3rd, 4th and 5th step) were made to wear aligners fabricated starting from physical models by 3D printing (3DP-ROA) and afterwards, for the next steps (6th, 7th and 8th step), aligners fabricated starting from physical models by CNC milling machine (CNC-ROA), were selected. Results: For the 6 patients wearing the CNC-ROA, it was observed a best fitting of the aligner to the teeth and a more rapid teeth movement than the 3DP-ROA (2 weeks compared to 3 weeks for every appliance). FEM simulations showed a more uniform stress distribution for CNC-ROA than 3DP-ROA. Conclusions: In this research, 6 different case studies and CAD-FEM simulations showed that, to fabricate an efficient clear and removable orthodontic aligner, it is necessary to consider a compromise of several factors. A lower staircase effect (lower layer thickness) and a higher physical prototype accuracy allow a better control of tooth movement.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.