In the mechanical transmission field, shaft-hub couplings with polygonal profiles play an interesting role because of their characteristics of self-alignment, lack of projecting elements (responsible for high stress concentration) and constructive compactness. Other characteristics, like transmission of static/oscillating torque load, even with small overall dimensions, and easy hub interchangeability, make such couplings competitive with the traditional ones based on keys and splined shafts. This work concerns a study on steel made polygonal couplings, with trochoidal three-lobe profile, and is aimed to highlight the contact stress and strain state of shaft-hub interface, with reference to particular profile geometric parameters. From Mechnik's and Kollmann's works, in which the analysis was performed by the Finite Element Method, this work develops a CAD/ CAE methodology for coupling design, oriented to an efficient integration between CAD systems and BEM solvers. The stress analysis is carried out with a Boundary Element code (BEASY) well suited for this kind of contact problems while coupling geometric model is made by Pro/Engineer, a solid parametric modeller. (C) 2001 Elsevier Science B.V. All rights reserved.
BE analysis of shaft-hub couplings with polygonal profiles
GERBINO, Salvatore
2001-01-01
Abstract
In the mechanical transmission field, shaft-hub couplings with polygonal profiles play an interesting role because of their characteristics of self-alignment, lack of projecting elements (responsible for high stress concentration) and constructive compactness. Other characteristics, like transmission of static/oscillating torque load, even with small overall dimensions, and easy hub interchangeability, make such couplings competitive with the traditional ones based on keys and splined shafts. This work concerns a study on steel made polygonal couplings, with trochoidal three-lobe profile, and is aimed to highlight the contact stress and strain state of shaft-hub interface, with reference to particular profile geometric parameters. From Mechnik's and Kollmann's works, in which the analysis was performed by the Finite Element Method, this work develops a CAD/ CAE methodology for coupling design, oriented to an efficient integration between CAD systems and BEM solvers. The stress analysis is carried out with a Boundary Element code (BEASY) well suited for this kind of contact problems while coupling geometric model is made by Pro/Engineer, a solid parametric modeller. (C) 2001 Elsevier Science B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.