Benign Familial Neonatal Seizures (BFNS) is a rare, autosomal-dominant epilepsy of the newborn caused by mutations in K(v)7.2 (KCNQ2) or K(v)7.3 (KCNQ3) genes encoding for neuronal potassium (K+) channel subunits. In this study, we describe a sporadic case of BFNS; the affected child carried heterozygous missense mutations in both K(v)7.2 (D212G) and K(v)3 (P574S) alleles. Electrophysiological experiments revealed that the K(v)7.2 D212C substitution, neutralizing a unique negatively-charged residue in the voltage sensor of Kv7.2 subunits, altered channel gating, leading to a marked destabilization of the open state, a result consistent with structural analysis of the K(v)7.2 subunit, suggesting a possible pathogenetic role for BFNS of this K(v)7.2 mutation. By contrast, no significant functional changes appeared to be prompted by the K(v)7.3 P574S substitution. Computational modelling experiments in CA1 pyramidal cells revealed that the gating changes introduced by the K(v)7.2 D212G increased cell firing frequency, thereby triggering the neuronal hyperexcitability which underlies the observed neonatal epileptic condition. (C) 2009 Elsevier Inc. All rights reserved.

Neutralization of a unique, negatively-charged residue in the voltage sensor of K(V)7.2 subunits in a sporadic case of benign familial neonatal seizures

SOLDOVIERI, Maria Virginia
Co-primo
;
AMBROSINO, Paolo;TAGLIALATELA, Maurizio
2009-01-01

Abstract

Benign Familial Neonatal Seizures (BFNS) is a rare, autosomal-dominant epilepsy of the newborn caused by mutations in K(v)7.2 (KCNQ2) or K(v)7.3 (KCNQ3) genes encoding for neuronal potassium (K+) channel subunits. In this study, we describe a sporadic case of BFNS; the affected child carried heterozygous missense mutations in both K(v)7.2 (D212G) and K(v)3 (P574S) alleles. Electrophysiological experiments revealed that the K(v)7.2 D212C substitution, neutralizing a unique negatively-charged residue in the voltage sensor of Kv7.2 subunits, altered channel gating, leading to a marked destabilization of the open state, a result consistent with structural analysis of the K(v)7.2 subunit, suggesting a possible pathogenetic role for BFNS of this K(v)7.2 mutation. By contrast, no significant functional changes appeared to be prompted by the K(v)7.3 P574S substitution. Computational modelling experiments in CA1 pyramidal cells revealed that the gating changes introduced by the K(v)7.2 D212G increased cell firing frequency, thereby triggering the neuronal hyperexcitability which underlies the observed neonatal epileptic condition. (C) 2009 Elsevier Inc. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/4650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact