Changes in the expression of potassium channels regulate skeletal muscle development. The purpose of this study was to investigate the expression profile and pharmacological role of K(v)7 voltage-gated potassium channels in skeletal muscle differentiation, proliferation, and survival after myotoxic insults. Transcripts for all K(v)7 genes (K(v)7.1-K(v)7.5) were detected by polymerase chain reaction (PCR) and/or real-time PCR in murine C2C12 myoblasts; K(v)7.1, K(v)7.3, and K(v)7.4 transcripts were up-regulated after myotube formation. Western blot experiments confirmed K(v)7.2, K(v)7.3, and K(v)7.4 subunit expression, and the up-regulation of K(v)7.3 and K(v)7.4 subunits during in vitro differentiation. In adult skeletal muscles from mice and humans, K(v)7.2 and K(v)7.3 immunoreactivity was mainly localized at the level of intracellular striations positioned between ankyrinG-positive triads, whereas that of K(v)7.4 subunits was largely restricted to the sarcolemmal membrane. In C2C12 cells, retigabine (10 mu M), a specific activator of neuronally expressed K(v)7.2 to K(v)7.5 subunits, reduced proliferation, accelerated myogenin expression, and inhibited the myotoxic effect of mevastatin (IC50 approximate to 7 mu M); all these effects of retigabine were prevented by the K(v)7 channel blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone (XE-991) (10 mu M). These data collectively highlight neural K(v)7 channels as significant pharmacological targets to regulate skeletal muscle proliferation, differentiation, and myotoxic effects of drugs.

Expression, Localization, and Pharmacological Role of K(v)7 Potassium Channels in Skeletal Muscle Proliferation, Differentiation, and Survival after Myotoxic Insults

VIGGIANO, Davide;SOLDOVIERI, Maria Virginia;TAGLIALATELA, Maurizio
2010

Abstract

Changes in the expression of potassium channels regulate skeletal muscle development. The purpose of this study was to investigate the expression profile and pharmacological role of K(v)7 voltage-gated potassium channels in skeletal muscle differentiation, proliferation, and survival after myotoxic insults. Transcripts for all K(v)7 genes (K(v)7.1-K(v)7.5) were detected by polymerase chain reaction (PCR) and/or real-time PCR in murine C2C12 myoblasts; K(v)7.1, K(v)7.3, and K(v)7.4 transcripts were up-regulated after myotube formation. Western blot experiments confirmed K(v)7.2, K(v)7.3, and K(v)7.4 subunit expression, and the up-regulation of K(v)7.3 and K(v)7.4 subunits during in vitro differentiation. In adult skeletal muscles from mice and humans, K(v)7.2 and K(v)7.3 immunoreactivity was mainly localized at the level of intracellular striations positioned between ankyrinG-positive triads, whereas that of K(v)7.4 subunits was largely restricted to the sarcolemmal membrane. In C2C12 cells, retigabine (10 mu M), a specific activator of neuronally expressed K(v)7.2 to K(v)7.5 subunits, reduced proliferation, accelerated myogenin expression, and inhibited the myotoxic effect of mevastatin (IC50 approximate to 7 mu M); all these effects of retigabine were prevented by the K(v)7 channel blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone (XE-991) (10 mu M). These data collectively highlight neural K(v)7 channels as significant pharmacological targets to regulate skeletal muscle proliferation, differentiation, and myotoxic effects of drugs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11695/4649
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 49
social impact