"Two organic amendments (OMW-M1 and OMW-M2), based on olive mill wastes (OMWs) subjected to advanced processes of aerobic static storage or composting, were tested for their suppressive activity against Verticillium dahliae, the causal agent of olive Verticillium wilt. OMW-M1 and OMW-M2 drastically inhibited the pathogen growth in vitro and then were further tested in suppressive pot experiments. The amendments, mixed at 15% (v\/v) with a nursery standard plant-growth matrix, were tested alone or in combination with two biocontrol bacteria (Bacillus amyloliquefaciens and Burkholderia cepacia) selected from suppressive soils. All mixtures were artificially contaminated with V. dahliae microsclerotia (MS) the density of which was periodically monitored by either a semi-selective medium or a specific real-time PCR technique. In plant-less pot assays conducted in a growth chamber, OMW-M1 was the most effective amendment, reducing V. dahliae MS density by 100% after 90 days with respect to the untreated control. In nursery experiments with pot-growing olive plants, OMW-M1, particularly when combined with the biocontrol bacteria, confirmed its strong suppressive activity reducing up to 100% the density of V. dahliae MS in the rhizosphere behaving even better than a commercial biofungicide (Trichoderma asperellum TV1) used as a control. The best combined treatment also reduced plant mortality and increased root and shoot extension. We conclude that organic amendments from stabilized olive mill by-products showed positive agronomic and phytosanitary properties on pot-growing olive plants and, particularly when enriched with biocontrol agents, they are potentially suitable for use in sustainable agriculture. "

Suppressive biomasses and antagonist bacteria for an eco-compatible control of Verticillium dahliae on nursery-grown olive plants

VITULLO, Domenico;RANALLI, Giancarlo;DE CICCO, Vincenzo;LIMA, Giuseppe
2013-01-01

Abstract

"Two organic amendments (OMW-M1 and OMW-M2), based on olive mill wastes (OMWs) subjected to advanced processes of aerobic static storage or composting, were tested for their suppressive activity against Verticillium dahliae, the causal agent of olive Verticillium wilt. OMW-M1 and OMW-M2 drastically inhibited the pathogen growth in vitro and then were further tested in suppressive pot experiments. The amendments, mixed at 15% (v\/v) with a nursery standard plant-growth matrix, were tested alone or in combination with two biocontrol bacteria (Bacillus amyloliquefaciens and Burkholderia cepacia) selected from suppressive soils. All mixtures were artificially contaminated with V. dahliae microsclerotia (MS) the density of which was periodically monitored by either a semi-selective medium or a specific real-time PCR technique. In plant-less pot assays conducted in a growth chamber, OMW-M1 was the most effective amendment, reducing V. dahliae MS density by 100% after 90 days with respect to the untreated control. In nursery experiments with pot-growing olive plants, OMW-M1, particularly when combined with the biocontrol bacteria, confirmed its strong suppressive activity reducing up to 100% the density of V. dahliae MS in the rhizosphere behaving even better than a commercial biofungicide (Trichoderma asperellum TV1) used as a control. The best combined treatment also reduced plant mortality and increased root and shoot extension. We conclude that organic amendments from stabilized olive mill by-products showed positive agronomic and phytosanitary properties on pot-growing olive plants and, particularly when enriched with biocontrol agents, they are potentially suitable for use in sustainable agriculture. "
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/45848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact