"\"In the last decades researchers investigated the possibility of extending the information collected in sampling units during a field survey to wider geographical areas through the use of remotely sensed images. One of the most widely adopted approaches is based on the non-parametric k-Nearest Neighbors (k-NN) algorithm. This contribution describes the software K-NN FOREST we developed to provide a complete tool for the implementation of the k-NN technique to generate spatially explicit estimations (maps) of a response variable acquired in the field by sampling units through the use of remotely sensed data or other ancillary variables. K-NN FOREST is designed to guide the user through a graphic user interface in the different phases of the process. K-NN FOREST is freely available for download and it is designed to run under Windows environment in conjunction with the GIS software IDRISI.\""

K-NN FOREST: a software for the non-parametric prediction and mapping of environmental variables by the k-Nearest Neighbors algorithm

MARCHETTI, Marco;
2012-01-01

Abstract

"\"In the last decades researchers investigated the possibility of extending the information collected in sampling units during a field survey to wider geographical areas through the use of remotely sensed images. One of the most widely adopted approaches is based on the non-parametric k-Nearest Neighbors (k-NN) algorithm. This contribution describes the software K-NN FOREST we developed to provide a complete tool for the implementation of the k-NN technique to generate spatially explicit estimations (maps) of a response variable acquired in the field by sampling units through the use of remotely sensed data or other ancillary variables. K-NN FOREST is designed to guide the user through a graphic user interface in the different phases of the process. K-NN FOREST is freely available for download and it is designed to run under Windows environment in conjunction with the GIS software IDRISI.\""
http://www.aitjournal.com/articleView.aspx?ID=654
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/45675
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact