The copper-glutathione complex (Cu(I)-GSH) efficiently acted in vitro as the source of Cu(I) in the reconstitution of apoceruloplasmin. Copper was found to reinstate in the various sites in a multistep process, with metal entry into the protein in a first phase, and a second step involving conformational changes of the protein leading to the recovery of the native structural and functional properties. This latter phase was found to be strongly facilitated by Mg2+ or Ca2+ and by ATP. Both Mg2+ and ATP had to be present for optimal reconstitution. These results may shed some light on the mechanisms governing the biosynthesis of ceruloplasmin in vivo. Cu(I)-GSH was the only complex able to reconstitute ceruloplasmin at neutral pH. Glutathione may thus function to shuttle the metal from the membrane copper pump, as the Wilson disease ATPase, and ceruloplasmin in the secretory compartments of the cell. The finding that ceruloplasmin acquires the native conformation after metal entry through a complex pathway triggered by Mg2+ and ATP suggests that they may act as physiological modulators of this process in vivo.

Reconstitution of ceruloplasmin by the Cu(I)-glutathione complex - Evidence for a role of Mg2+ and ATP

MUSCI, Giovanni;
1996-01-01

Abstract

The copper-glutathione complex (Cu(I)-GSH) efficiently acted in vitro as the source of Cu(I) in the reconstitution of apoceruloplasmin. Copper was found to reinstate in the various sites in a multistep process, with metal entry into the protein in a first phase, and a second step involving conformational changes of the protein leading to the recovery of the native structural and functional properties. This latter phase was found to be strongly facilitated by Mg2+ or Ca2+ and by ATP. Both Mg2+ and ATP had to be present for optimal reconstitution. These results may shed some light on the mechanisms governing the biosynthesis of ceruloplasmin in vivo. Cu(I)-GSH was the only complex able to reconstitute ceruloplasmin at neutral pH. Glutathione may thus function to shuttle the metal from the membrane copper pump, as the Wilson disease ATPase, and ceruloplasmin in the secretory compartments of the cell. The finding that ceruloplasmin acquires the native conformation after metal entry through a complex pathway triggered by Mg2+ and ATP suggests that they may act as physiological modulators of this process in vivo.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/2492
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 47
social impact