To evaluate the influences of dietary Bacillus-based probiotics and yeast-based prebiotics over 16 weeks, 500 37-week-old Hisex white layers were indiscriminately assigned to five dietary groups: T1, control; T2, control + Bacillus subtilis (1.1 × 108 CFU/kg); T3, control + Bacillus subtilis and Bacillus licheniformis (1.3 × 109 CFU/kg); T4, control + Bacillus coagulans (1.0 × 109 CFU/kg); and T5, control + Saccharomyces cerevisiae yeast cell wall (0.25 g/kg). Cumulatively (p < 0.001), T1 showed the highest feed consumption, while T4 and T5 had higher egg production than T1 and T3. T3 yielded the heaviest eggs, whereas T2 produced the lightest. Egg mass was higher in T3, T4, and T5, with all supplemented groups showing improved feed conversion ratios compared to the control. Furthermore, T5 showed a higher wet yolk weight (p < 0.001), while T2 and T5 had a higher dry albumin weight (p < 0.05). Additionally, T3, T4, and T5 reduced serum IL-1β (p < 0.05), IL-6 (p < 0.01), and TNF-α (p < 0.01), alongside elevated IL-10 levels (p < 0.01) relative to the control. Overall, the results suggest that dietary supplementation with multi-strain combinations and yeast-derived prebiotics can enhance both productivity and immune health in laying hens.

Enhancing Laying Hen Productivity and Health: Influence of Dietary Probiotic Bacillus Strains and Prebiotic Saccharomyces cerevisiae Yeast Cell Wall on Production Performance, Egg Quality, and Inflammatory Responses

D'Andrea M.;
2025-01-01

Abstract

To evaluate the influences of dietary Bacillus-based probiotics and yeast-based prebiotics over 16 weeks, 500 37-week-old Hisex white layers were indiscriminately assigned to five dietary groups: T1, control; T2, control + Bacillus subtilis (1.1 × 108 CFU/kg); T3, control + Bacillus subtilis and Bacillus licheniformis (1.3 × 109 CFU/kg); T4, control + Bacillus coagulans (1.0 × 109 CFU/kg); and T5, control + Saccharomyces cerevisiae yeast cell wall (0.25 g/kg). Cumulatively (p < 0.001), T1 showed the highest feed consumption, while T4 and T5 had higher egg production than T1 and T3. T3 yielded the heaviest eggs, whereas T2 produced the lightest. Egg mass was higher in T3, T4, and T5, with all supplemented groups showing improved feed conversion ratios compared to the control. Furthermore, T5 showed a higher wet yolk weight (p < 0.001), while T2 and T5 had a higher dry albumin weight (p < 0.05). Additionally, T3, T4, and T5 reduced serum IL-1β (p < 0.05), IL-6 (p < 0.01), and TNF-α (p < 0.01), alongside elevated IL-10 levels (p < 0.01) relative to the control. Overall, the results suggest that dietary supplementation with multi-strain combinations and yeast-derived prebiotics can enhance both productivity and immune health in laying hens.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/153032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact