The use of a wide variety of antioxidants has been advocated as a means to prevent, delay the progression of, or counteract the adverse consequences of sarcopenia, such as loss of muscle strength, muscle quantity/quality, and physical performance. However, these proposals do not always appear to be supported in the literature by a thorough understanding of the contribution of redox perturbations to the pathogenesis of sarcopenia, nor of the biochemical properties, mechanism of action, pharmacokinetics, and pharmacodynamics of different antioxidants. This review discusses these aspects, aiming to provide a rationale for the selection and use of antioxidants in sarcopenia. After providing a definition of sarcopenia in the context of frailty, we distinguish between oxidative eustress as a physiological response of muscle cells to mild stimulation, such as moderate exercise, mediating their capacity for adaptation and regeneration, and oxidative distress as a pathophysiological response to muscle cell damage and death. The role of oxidative damage to biological macromolecules, both direct and mediated by advanced lipid peroxidation end products and advanced glycation/glycoxidation end products, is examined in detail. Next, we discuss antioxidant defense mechanisms, both enzymatic and non-enzymatic, including redox-sensitive gene regulatory events presided over by nuclear factor erythroid 2-related factor 2, the master regulator of enzymatic antioxidants. The review then discusses criteria for a rational classification of non-enzymatic antioxidants. This is followed by a review of some of the main radical-trapping antioxidants, both phenolic and non-phenolic, whose characteristics are compared.
A Reassessment of Sarcopenia from a Redox Perspective as a Basis for Preventive and Therapeutic Interventions
Arcaro A.;Lepore A.;Cetrangolo G. P.;Paventi G.;Gentile F.
2025-01-01
Abstract
The use of a wide variety of antioxidants has been advocated as a means to prevent, delay the progression of, or counteract the adverse consequences of sarcopenia, such as loss of muscle strength, muscle quantity/quality, and physical performance. However, these proposals do not always appear to be supported in the literature by a thorough understanding of the contribution of redox perturbations to the pathogenesis of sarcopenia, nor of the biochemical properties, mechanism of action, pharmacokinetics, and pharmacodynamics of different antioxidants. This review discusses these aspects, aiming to provide a rationale for the selection and use of antioxidants in sarcopenia. After providing a definition of sarcopenia in the context of frailty, we distinguish between oxidative eustress as a physiological response of muscle cells to mild stimulation, such as moderate exercise, mediating their capacity for adaptation and regeneration, and oxidative distress as a pathophysiological response to muscle cell damage and death. The role of oxidative damage to biological macromolecules, both direct and mediated by advanced lipid peroxidation end products and advanced glycation/glycoxidation end products, is examined in detail. Next, we discuss antioxidant defense mechanisms, both enzymatic and non-enzymatic, including redox-sensitive gene regulatory events presided over by nuclear factor erythroid 2-related factor 2, the master regulator of enzymatic antioxidants. The review then discusses criteria for a rational classification of non-enzymatic antioxidants. This is followed by a review of some of the main radical-trapping antioxidants, both phenolic and non-phenolic, whose characteristics are compared.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


