Background and objectives: Percutaneous microwave thermal ablation is based on electromagnetic waves that generate dielectric heating, and it is widely recognized as one of the mostly used techniques for tumor treatment. The aim of this work is to validate a predictive model capable of providing physicians with guidelines to be used during thermal ablation procedures avoiding collateral damage.Methods: A finite element commercial software, COMSOL Multiphysics, is employed to implement a tuningparameter approach. Governing equations are written with reference to variable-porosity and Local Thermal Non-Equilibrium (LTNE) equations are employed. The simulations results are compared with available ex-vivo and in-vivo data with the help of regression analysis. For in-vivo data simulations, velocity vector modulus and direction are varied between 0.0007 and 0.0009 m/s and 90-270 degrees, respectively, in order to use this parameter as a tuning one to simulate - and lately optimize with respect to the differences from experimental outcomes - all the possible directions of the blood flow with respect to the antenna, whose insertion angle is not registered in the dataset.Results: The model is validated using reference data provided by the manufacturer (AMICA), which is obtained from ex-vivo bovine liver. The model accurately predicts the size and shape of the ablated area, resulting in an overestimation lesser than 10 %. Additionally, predictive data are compared to an in-vivo dataset. The ablated volume is accurately predicted with a mean underestimation of 6 %. The sphericity index is calculated as 0.75 and 0.62 for the predictions and in-vivo data, respectively.Conclusion: This study developed a predictive model for microwave ablation of liver tumors that showed good performance in predicting ablation dimensions and sphericity index for ex-vivo bovine liver and for in-vivo human liver data with the tuning technique. The study emphasizes the necessity for additional development and validation to enhance the accuracy and reliability of in-vivo application.

Microwave ablation modeling with AMICA antenna: Validation by means a numerical analysis

Cafarchio, A.;Vanoli, G. P.;
2023-01-01

Abstract

Background and objectives: Percutaneous microwave thermal ablation is based on electromagnetic waves that generate dielectric heating, and it is widely recognized as one of the mostly used techniques for tumor treatment. The aim of this work is to validate a predictive model capable of providing physicians with guidelines to be used during thermal ablation procedures avoiding collateral damage.Methods: A finite element commercial software, COMSOL Multiphysics, is employed to implement a tuningparameter approach. Governing equations are written with reference to variable-porosity and Local Thermal Non-Equilibrium (LTNE) equations are employed. The simulations results are compared with available ex-vivo and in-vivo data with the help of regression analysis. For in-vivo data simulations, velocity vector modulus and direction are varied between 0.0007 and 0.0009 m/s and 90-270 degrees, respectively, in order to use this parameter as a tuning one to simulate - and lately optimize with respect to the differences from experimental outcomes - all the possible directions of the blood flow with respect to the antenna, whose insertion angle is not registered in the dataset.Results: The model is validated using reference data provided by the manufacturer (AMICA), which is obtained from ex-vivo bovine liver. The model accurately predicts the size and shape of the ablated area, resulting in an overestimation lesser than 10 %. Additionally, predictive data are compared to an in-vivo dataset. The ablated volume is accurately predicted with a mean underestimation of 6 %. The sphericity index is calculated as 0.75 and 0.62 for the predictions and in-vivo data, respectively.Conclusion: This study developed a predictive model for microwave ablation of liver tumors that showed good performance in predicting ablation dimensions and sphericity index for ex-vivo bovine liver and for in-vivo human liver data with the tuning technique. The study emphasizes the necessity for additional development and validation to enhance the accuracy and reliability of in-vivo application.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/140689
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact