Magnetic hyperthermia (MHT) is a promising cancer treatment that exploits the heating capabilities of magnetic nanoparticles (MNPs) when exposed to alternating magnetic fields. The primary challenge in optimizing MHT lies in understanding the influence of MNP distribution within the tumor microenvironment. This study presents realistic simulations of MNP distribution within a tumor, accounting for diffusion, convection, and internalization dynamics, alongside the presence of a necrotic core. Additionally, a vascular network was modeled based on diagnostic images to assess its impact on nanoparticle behavior and heat generation within the tumor. Our results show that uneven MNP distribution, particularly in areas influenced by the tumor's vasculature and necrotic regions, results in highly variable temperature profiles and irregular thermal damage. By contrast, a more uniform distribution of MNPs leads to a consistent rise in temperature and a broader region of thermal damage, with maximum temperatures reaching 47 °C and 99 % tumor cell death after 60 min of treatment. Key quantitative findings indicate that the tumor's vascular architecture plays a crucial role in determining the heat distribution and treatment efficacy. This study highlights the importance of fine-tuning MNP delivery and distribution to maximize therapeutic outcomes in MHT. The approach offers significant potential for applications in treating deep-seated or inoperable tumors, where precise and localized therapy is critical.
Effects of magnetic nanoparticle distribution in cancer therapy through hyperthermia
Brunese, L.;Cafarchio, A.
;Vanoli, G. P.
2025-01-01
Abstract
Magnetic hyperthermia (MHT) is a promising cancer treatment that exploits the heating capabilities of magnetic nanoparticles (MNPs) when exposed to alternating magnetic fields. The primary challenge in optimizing MHT lies in understanding the influence of MNP distribution within the tumor microenvironment. This study presents realistic simulations of MNP distribution within a tumor, accounting for diffusion, convection, and internalization dynamics, alongside the presence of a necrotic core. Additionally, a vascular network was modeled based on diagnostic images to assess its impact on nanoparticle behavior and heat generation within the tumor. Our results show that uneven MNP distribution, particularly in areas influenced by the tumor's vasculature and necrotic regions, results in highly variable temperature profiles and irregular thermal damage. By contrast, a more uniform distribution of MNPs leads to a consistent rise in temperature and a broader region of thermal damage, with maximum temperatures reaching 47 °C and 99 % tumor cell death after 60 min of treatment. Key quantitative findings indicate that the tumor's vascular architecture plays a crucial role in determining the heat distribution and treatment efficacy. This study highlights the importance of fine-tuning MNP delivery and distribution to maximize therapeutic outcomes in MHT. The approach offers significant potential for applications in treating deep-seated or inoperable tumors, where precise and localized therapy is critical.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.