Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has quickly become a global health pandemic. Among the viral proteins, RNA‐dependent RNA polymerase (RdRp) is responsible for viral genome replication and has emerged as a promising target against SARS‐CoV‐2 infection. Dietary bioactive compounds represent an important source of evolutionarily optimized molecules with antiviral properties against SARS-CoV-2 RdRp. We investigated the inhibitory potential effects of different phytochemicals against SARS-CoV-2 RdRp, including andrographolide, kaempferol, resveratrol, and silibinin. Unlike the other investigated compounds, kaempferol exhibited a significant dose-dependent in vitro inhibition of SARS-CoV-2 RdRp activity. To assess the binding interactions and stability of the SARS-CoV-2 RdRp-kaempferol complex, we performed in silico techniques, including molecular docking, quantum chemical calculation, and molecular dynamics simulations. We found strong binding affinities and stability between kaempferol and SARS-CoV-2 RdRp variants (Wuhan and Omicron). These findings provide valuable insights into the antiviral properties of kaempferol as a stable inhibitor of SARS-CoV-2 RdRp. Communicated by Ramaswamy H. Sarma.

Kaempferol as a novel inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase

Medoro A.;Intrieri M.;Passarella D.;Scapagnini G.
;
Davinelli S.
2024-01-01

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has quickly become a global health pandemic. Among the viral proteins, RNA‐dependent RNA polymerase (RdRp) is responsible for viral genome replication and has emerged as a promising target against SARS‐CoV‐2 infection. Dietary bioactive compounds represent an important source of evolutionarily optimized molecules with antiviral properties against SARS-CoV-2 RdRp. We investigated the inhibitory potential effects of different phytochemicals against SARS-CoV-2 RdRp, including andrographolide, kaempferol, resveratrol, and silibinin. Unlike the other investigated compounds, kaempferol exhibited a significant dose-dependent in vitro inhibition of SARS-CoV-2 RdRp activity. To assess the binding interactions and stability of the SARS-CoV-2 RdRp-kaempferol complex, we performed in silico techniques, including molecular docking, quantum chemical calculation, and molecular dynamics simulations. We found strong binding affinities and stability between kaempferol and SARS-CoV-2 RdRp variants (Wuhan and Omicron). These findings provide valuable insights into the antiviral properties of kaempferol as a stable inhibitor of SARS-CoV-2 RdRp. Communicated by Ramaswamy H. Sarma.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/139129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact