: We have previously shown that Neutrophil Gelatinase-Associated Lipocalin (NGAL) is strongly expressed in thyroid carcinomas, especially of anaplastic type, where it protects neoplastic cells from serum deprivation-induced apoptosis and enhances tumor invasivity by regulating MMP-9 activity. Here we demonstrate that NGAL-containing conditioned medium from human anaplastic thyroid carcinoma (ATC) cells is able to induce monocyte migration via up-regulation of a number of different chemokines. The enhanced chemokines transcription is due to the NGAL-mediated intracellular iron uptake. Very importantly, mice tumor allografts raised from subcutaneous injection of syngeneic colon carcinoma cell lines, expressing high levels of NGAL, show a dense leukocyte infiltrate which strongly decreases in tumor allografts from NGAL-depleted cell injected mice. Our results indicate that the NGAL promotes leukocytes recruitment in tumor microenvironment through iron-mediated chemokines production.
NGAL promotes recruitment of tumor infiltrating leukocytes
Lepore, AlessioInvestigation
;
2018-01-01
Abstract
: We have previously shown that Neutrophil Gelatinase-Associated Lipocalin (NGAL) is strongly expressed in thyroid carcinomas, especially of anaplastic type, where it protects neoplastic cells from serum deprivation-induced apoptosis and enhances tumor invasivity by regulating MMP-9 activity. Here we demonstrate that NGAL-containing conditioned medium from human anaplastic thyroid carcinoma (ATC) cells is able to induce monocyte migration via up-regulation of a number of different chemokines. The enhanced chemokines transcription is due to the NGAL-mediated intracellular iron uptake. Very importantly, mice tumor allografts raised from subcutaneous injection of syngeneic colon carcinoma cell lines, expressing high levels of NGAL, show a dense leukocyte infiltrate which strongly decreases in tumor allografts from NGAL-depleted cell injected mice. Our results indicate that the NGAL promotes leukocytes recruitment in tumor microenvironment through iron-mediated chemokines production.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.