: Biosolids are considered a potentially major input of microplastics (MPs) to agricultural soils. Our study aims to identify the polymeric origin of MPs extracted from biosolid samples by comparing their Attenuated Total Reflection (ATR) - Fourier-transform infrared (FTIR) spectra with the corresponding near-infrared (NIR) spectra. The reflectance spectra were preprocessed by Savitzky-Golay (SG), first derivative (FD) and compared with analogous spectra acquired on a set of fifty-two selected commercial plastic (SCP) materials collected from readily available products. According to the results portrayed in radar chart and built from both ATR-FTIR and NIR spectral datasets, the MPs showed high correlations with polymers such as polyethylene (LDPE, HDPE), polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP) and polyamide (PA), determined in SCP samples. Each unknown MP sample had on average three or more links to several types of SCP, according to the correlation coefficients for each polymer ranging from 0.7 up to 1. The comparison analysis classified the majority of MPs as composed mainly by LDPE/HDPE, according to the top correlation coefficients (r > 0.90). PP and PET were better identified with NIR than ATR-FTIR. In contrast to ATR-FTIR analysis, NIR was unable to identify PS. Based on these results, the primary sources of MPs in the biosolids could be identified as discarded consumer packaging (containers, bags, bottles) and fibers from laundry, disposable glove, and cleaning cloth. SYNOPSIS: Microplastics (MPs) are considered contaminants of emerging concern. This study compares two simple and fast spectroscopy techniques to identify microplastics in the biosolid matrix.

Comparison of ATR-FTIR and NIR spectroscopy for identification of microplastics in biosolids

Circelli, Luana
;
Di Iorio, Erika;Angelico, Ruggero;Colombo, Claudio
2024-01-01

Abstract

: Biosolids are considered a potentially major input of microplastics (MPs) to agricultural soils. Our study aims to identify the polymeric origin of MPs extracted from biosolid samples by comparing their Attenuated Total Reflection (ATR) - Fourier-transform infrared (FTIR) spectra with the corresponding near-infrared (NIR) spectra. The reflectance spectra were preprocessed by Savitzky-Golay (SG), first derivative (FD) and compared with analogous spectra acquired on a set of fifty-two selected commercial plastic (SCP) materials collected from readily available products. According to the results portrayed in radar chart and built from both ATR-FTIR and NIR spectral datasets, the MPs showed high correlations with polymers such as polyethylene (LDPE, HDPE), polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP) and polyamide (PA), determined in SCP samples. Each unknown MP sample had on average three or more links to several types of SCP, according to the correlation coefficients for each polymer ranging from 0.7 up to 1. The comparison analysis classified the majority of MPs as composed mainly by LDPE/HDPE, according to the top correlation coefficients (r > 0.90). PP and PET were better identified with NIR than ATR-FTIR. In contrast to ATR-FTIR analysis, NIR was unable to identify PS. Based on these results, the primary sources of MPs in the biosolids could be identified as discarded consumer packaging (containers, bags, bottles) and fibers from laundry, disposable glove, and cleaning cloth. SYNOPSIS: Microplastics (MPs) are considered contaminants of emerging concern. This study compares two simple and fast spectroscopy techniques to identify microplastics in the biosolid matrix.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/128589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact