Endothelial progenitor cells (EPCs) home from the bone marrow to the site of tissue regeneration and sustain neovascularization after acute vascular injury and upon the angiogenic switch in solid tumors. Therefore, they represent a suitable tool for cell-based therapy (CBT) in regenerative medicine and provide a novel promising target in the fight against cancer. Intracellular Ca2+ signals regulate numerous endothelial functions, such as proliferation and tubulogenesis. The growth of endothelial colony forming cells (ECFCs), which are EPCs capable of acquiring a mature endothelial phenotype, is governed by store-dependent Ca2+ entry (SOCE). This study aimed at investigating the nature and the role of VEGF-elicited Ca2+ signals in ECFCs. VEGF induced asynchronous Ca2+ oscillations, whose latency, amplitude, and frequency were correlated to the growth factor dose. Removal of external Ca2+ (0Ca2+) and SOCE inhibition with N-(4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP-2) reduced the duration of the oscillatory signal. Blockade of phospholipase C-γ with U73122, emptying the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pools with cyclopiazonic acid (CPA), and inhibition of InsP3 receptors with 2-APB prevented the Ca2+ response to VEGF. VEGF-induced ECFC proliferation and tubulogenesis were inhibited by the Ca2+-chelant, BAPTA, and BTP-2. NF-κB activation by VEGF was impaired by BAPTA, BTP-2, and its selective blocker, thymoquinone. Thymoquinone, in turn, suppressed VEGF-dependent ECFC proliferation and tubulogenesis. These data indicate that VEGF-induced Ca2+ oscillations require the interplay between InsP3-dependent Ca2+ release and SOCE, and promote ECFC growth and tubulogenesis by engaging NF-κB. This novel signaling pathway might be exploited to enhance the outcome of CBT and chemotherapy.

Vascular Endothelial Growth Factor Stimulates Endothelial Colony Forming Cells Proliferation and Tubulogenesis by Inducing Oscillations in Intracellular CA(2+) Concentration

GUERRA, Germano;
2011

Abstract

Endothelial progenitor cells (EPCs) home from the bone marrow to the site of tissue regeneration and sustain neovascularization after acute vascular injury and upon the angiogenic switch in solid tumors. Therefore, they represent a suitable tool for cell-based therapy (CBT) in regenerative medicine and provide a novel promising target in the fight against cancer. Intracellular Ca2+ signals regulate numerous endothelial functions, such as proliferation and tubulogenesis. The growth of endothelial colony forming cells (ECFCs), which are EPCs capable of acquiring a mature endothelial phenotype, is governed by store-dependent Ca2+ entry (SOCE). This study aimed at investigating the nature and the role of VEGF-elicited Ca2+ signals in ECFCs. VEGF induced asynchronous Ca2+ oscillations, whose latency, amplitude, and frequency were correlated to the growth factor dose. Removal of external Ca2+ (0Ca2+) and SOCE inhibition with N-(4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP-2) reduced the duration of the oscillatory signal. Blockade of phospholipase C-γ with U73122, emptying the inositol-1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pools with cyclopiazonic acid (CPA), and inhibition of InsP3 receptors with 2-APB prevented the Ca2+ response to VEGF. VEGF-induced ECFC proliferation and tubulogenesis were inhibited by the Ca2+-chelant, BAPTA, and BTP-2. NF-κB activation by VEGF was impaired by BAPTA, BTP-2, and its selective blocker, thymoquinone. Thymoquinone, in turn, suppressed VEGF-dependent ECFC proliferation and tubulogenesis. These data indicate that VEGF-induced Ca2+ oscillations require the interplay between InsP3-dependent Ca2+ release and SOCE, and promote ECFC growth and tubulogenesis by engaging NF-κB. This novel signaling pathway might be exploited to enhance the outcome of CBT and chemotherapy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/1285
Citazioni
  • ???jsp.display-item.citation.pmc??? 72
  • Scopus 139
  • ???jsp.display-item.citation.isi??? 131
social impact