Neuroimaging studies associate specific functional roles to distinct brain regions investigating separate cognitive processes using dedicated tasks. For example, using both correlative (i.e., fMRI) and causal (i.e., TMS) approaches it has been shown the involvement of intra-parietal sulcus (IPS), as part of the dorsal attention network, in spatial attentional tasks as well as the importance of the angular gyrus (AG), as part of the default mode network, during the selection of relevant information in semantic memory. Nonetheless, in our daily life attention and semantic memory are rarely needed in isolation. In the present TMS study we investigate how the brain combines attentional and semantic memory demands in a single task. Results showed that, compared to a pseudo-TMS, stimulation of IPS, but not AG, affects behavioral performance, thus suggesting its preponderant role in such a combined task. Moreover, the lack of difference between the effect of IPS and AG stimulations seems to suggest that the two regions may be coactivated or that a third-party source might indirectly mediate the interaction between the two networks.

Visuo-spatial attention and semantic memory competition in the parietal cortex

Sulpizio V.;
2023-01-01

Abstract

Neuroimaging studies associate specific functional roles to distinct brain regions investigating separate cognitive processes using dedicated tasks. For example, using both correlative (i.e., fMRI) and causal (i.e., TMS) approaches it has been shown the involvement of intra-parietal sulcus (IPS), as part of the dorsal attention network, in spatial attentional tasks as well as the importance of the angular gyrus (AG), as part of the default mode network, during the selection of relevant information in semantic memory. Nonetheless, in our daily life attention and semantic memory are rarely needed in isolation. In the present TMS study we investigate how the brain combines attentional and semantic memory demands in a single task. Results showed that, compared to a pseudo-TMS, stimulation of IPS, but not AG, affects behavioral performance, thus suggesting its preponderant role in such a combined task. Moreover, the lack of difference between the effect of IPS and AG stimulations seems to suggest that the two regions may be coactivated or that a third-party source might indirectly mediate the interaction between the two networks.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/127985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact