Since their relatively recent discovery, telocytes (TCs) have been described as peculiar cells strategically positioned in the stromal tissue component of multiple organ systems of the mammalian body including female reproductive organs (i.e., ovary, uterine tube, and uterus). Nevertheless, current knowledge of TCs in the vagina is very limited. The present study was therefore undertaken to investigate the existence and characteristics of TCs in the stromal tissue of human vaginal mucosa by means of immunohistochemistry, immunofluorescence confocal microscopy, and transmission electron microscopy. In the vaginal lamina propria, TCs were first identified by CD34 immunohistochemistry that revealed the presence of CD34+ stromal cells arranged in networks, especially around blood vessels. Double immunofluorescence confocal microscopy allowed to precisely distinguish the perivascular networks of CD34+ stromal cells lacking CD31 immunoreactivity from adjacent CD31+ microvessels. All the perivascular networks of TCs/CD34+ stromal cells situated in the vaginal lamina propria coexpressed platelet-derived growth factor receptor α, which strengthened their identification as TCs. Instead, vaginal mucosal TCs were immunophenotypically negative for c-kit/CD117. The ultrastructural examination confirmed the presence of TCs, namely stromal cells with characteristic cytoplasmic processes (i.e., telopodes) forming labyrinthine networks around blood vessels and releasing extracellular vesicles. Together, our morphological findings provide the first comprehensive demonstration that TCs reside in the human vaginal lamina propria, thus paving the way for further investigation of their putative functions in vaginal mucosal homeostasis and pathophysiology.

Immunohistochemical and ultrastructural identification of telocytes in the lamina propria of human vaginal mucosa

Eleonora Sgambati;
2023-01-01

Abstract

Since their relatively recent discovery, telocytes (TCs) have been described as peculiar cells strategically positioned in the stromal tissue component of multiple organ systems of the mammalian body including female reproductive organs (i.e., ovary, uterine tube, and uterus). Nevertheless, current knowledge of TCs in the vagina is very limited. The present study was therefore undertaken to investigate the existence and characteristics of TCs in the stromal tissue of human vaginal mucosa by means of immunohistochemistry, immunofluorescence confocal microscopy, and transmission electron microscopy. In the vaginal lamina propria, TCs were first identified by CD34 immunohistochemistry that revealed the presence of CD34+ stromal cells arranged in networks, especially around blood vessels. Double immunofluorescence confocal microscopy allowed to precisely distinguish the perivascular networks of CD34+ stromal cells lacking CD31 immunoreactivity from adjacent CD31+ microvessels. All the perivascular networks of TCs/CD34+ stromal cells situated in the vaginal lamina propria coexpressed platelet-derived growth factor receptor α, which strengthened their identification as TCs. Instead, vaginal mucosal TCs were immunophenotypically negative for c-kit/CD117. The ultrastructural examination confirmed the presence of TCs, namely stromal cells with characteristic cytoplasmic processes (i.e., telopodes) forming labyrinthine networks around blood vessels and releasing extracellular vesicles. Together, our morphological findings provide the first comprehensive demonstration that TCs reside in the human vaginal lamina propria, thus paving the way for further investigation of their putative functions in vaginal mucosal homeostasis and pathophysiology.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/125109
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact