Current therapeutic strategies for acute heart failure (AHF) are based on traditional inotropic agents that are often associated with untoward effects; therefore, finding new effective approaches with a safer profile is dramatically needed. Istaroxime is a novel compound, chemically unrelated to cardiac glycosides, that is currently being studied for the treatment of AHF. Its effects are essentially related to its inotropic and lusitropic positive properties exerted through a dual mechanism of action: activation of the sarcoplasmic reticulum Ca2+ ATPase isoform 2a (SERCA2a) and inhibition of the Na+/K+-ATPase (NKA) activity. The advantages of istaroxime over the available inotropic agents include its lower arrhythmogenic action combined with its capability of increasing systolic blood pressure without augmenting heart rate. However, it has a limited half-life (1 hour) and is associated with adverse effects including pain at the injection site and gastrointestinal issues. Herein, we describe the main mechanism of action of istaroxime and we present a systematic overview of both clinical and preclinical trials testing this drug, underlining the latest insights regarding its adoption in clinical practice for AHF.
Efficacy of the New Inotropic Agent Istaroxime in Acute Heart Failure
Mone, PasqualeSecondo
;
2022-01-01
Abstract
Current therapeutic strategies for acute heart failure (AHF) are based on traditional inotropic agents that are often associated with untoward effects; therefore, finding new effective approaches with a safer profile is dramatically needed. Istaroxime is a novel compound, chemically unrelated to cardiac glycosides, that is currently being studied for the treatment of AHF. Its effects are essentially related to its inotropic and lusitropic positive properties exerted through a dual mechanism of action: activation of the sarcoplasmic reticulum Ca2+ ATPase isoform 2a (SERCA2a) and inhibition of the Na+/K+-ATPase (NKA) activity. The advantages of istaroxime over the available inotropic agents include its lower arrhythmogenic action combined with its capability of increasing systolic blood pressure without augmenting heart rate. However, it has a limited half-life (1 hour) and is associated with adverse effects including pain at the injection site and gastrointestinal issues. Herein, we describe the main mechanism of action of istaroxime and we present a systematic overview of both clinical and preclinical trials testing this drug, underlining the latest insights regarding its adoption in clinical practice for AHF.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.