Worldwide, national governments and private organizations are increasingly investing in Nature-Based Solutions (NBS) to foster both human well-being and biodiversity while achieving climate and environmental targets. Yet, investments in NBS remain uncoordinated among planning levels, their co-benefits underestimated, and their effectiveness undermined. This study aims to provide a spatially explicit approach to optimize the budget allocation for NBS implementation across Italian urban areas while maximizing their effectiveness in terms of environmental health. We explored three different NBS implementation scenarios oriented to (i) maximize the Ecosystem Services supply of NBS (Scenario BP), (ii) minimize costs of NBS (Scenario LC), and (iii) maximize Ecosystem Services supply of NBS at the lowest cost (Scenario CP). Once selected, we prioritized their allocation through the territory following an environmental risk index for population, and we explored the relationship between costs and effectiveness for the three scenarios. The implementation of Scenario BP costs EUR 777 billion while showing 31 billion of effectiveness. Scenario LC costs 70% less than scenario BP (EUR 206 billion) while losing 70% of its effectiveness. Scenario CP costs 60% less than Scenario BP (EUR 301 billion), offering just 20% less effectiveness. Our results show that employing the risk index for NBS allocation would allow for reducing the surface of interventions by saving 67% of the budget in the three scenarios with a negligible loss in terms of return for human health. The here-proposed approach can guide the national funds’ allocation system, improving its cost-effectiveness and equitableness.

Cost-Effectiveness of Nature-Based Solutions under Different Implementation Scenarios: A National Perspective for Italian Urban Areas

Di Pirro E.;Sallustio L.;Marchetti M.;Lasserre B.
2023-01-01

Abstract

Worldwide, national governments and private organizations are increasingly investing in Nature-Based Solutions (NBS) to foster both human well-being and biodiversity while achieving climate and environmental targets. Yet, investments in NBS remain uncoordinated among planning levels, their co-benefits underestimated, and their effectiveness undermined. This study aims to provide a spatially explicit approach to optimize the budget allocation for NBS implementation across Italian urban areas while maximizing their effectiveness in terms of environmental health. We explored three different NBS implementation scenarios oriented to (i) maximize the Ecosystem Services supply of NBS (Scenario BP), (ii) minimize costs of NBS (Scenario LC), and (iii) maximize Ecosystem Services supply of NBS at the lowest cost (Scenario CP). Once selected, we prioritized their allocation through the territory following an environmental risk index for population, and we explored the relationship between costs and effectiveness for the three scenarios. The implementation of Scenario BP costs EUR 777 billion while showing 31 billion of effectiveness. Scenario LC costs 70% less than scenario BP (EUR 206 billion) while losing 70% of its effectiveness. Scenario CP costs 60% less than Scenario BP (EUR 301 billion), offering just 20% less effectiveness. Our results show that employing the risk index for NBS allocation would allow for reducing the surface of interventions by saving 67% of the budget in the three scenarios with a negligible loss in terms of return for human health. The here-proposed approach can guide the national funds’ allocation system, improving its cost-effectiveness and equitableness.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/118528
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact