Carbonaceous aerosol is the most significant contributor to the particulate matter in the atmosphere. It is composed of a complex mixture of compounds containing carbon atoms and is usually classified into two main fractions: black carbon (BC) and organic carbon (OC). BC is essentially a primary pollutant emitted in particulate form, and its chemical stability excludes chemical transformations during its lifetime in the atmosphere. Therefore, it should be considered a tracer for the long-range transport of anthropogenic air pollution. OC has both primary and secondary origins: primary OC particulate is formed during combustion and emitted mainly as submicron particles, whereas secondary OC particulate originates from gas-to-particle conversion processes. This SI aims to deepen the state of the art on this important topic ranging from theory to the development of new instrumentation useful for this determination, to the chemical-physical problems in the atmosphere, to the health and toxicological implications related to exposure to these pollutants as well as papers showing historical data series both in urban, rural, and remote areas are also appreciated.

Black Carbon in Atmosphere: Instrumentation, Chemical-Physical Behavior, Human Health Implications

Avino, P
Primo
2022-01-01

Abstract

Carbonaceous aerosol is the most significant contributor to the particulate matter in the atmosphere. It is composed of a complex mixture of compounds containing carbon atoms and is usually classified into two main fractions: black carbon (BC) and organic carbon (OC). BC is essentially a primary pollutant emitted in particulate form, and its chemical stability excludes chemical transformations during its lifetime in the atmosphere. Therefore, it should be considered a tracer for the long-range transport of anthropogenic air pollution. OC has both primary and secondary origins: primary OC particulate is formed during combustion and emitted mainly as submicron particles, whereas secondary OC particulate originates from gas-to-particle conversion processes. This SI aims to deepen the state of the art on this important topic ranging from theory to the development of new instrumentation useful for this determination, to the chemical-physical problems in the atmosphere, to the health and toxicological implications related to exposure to these pollutants as well as papers showing historical data series both in urban, rural, and remote areas are also appreciated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/115340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact