During the last few years, sports analytics has been growing rapidly. The main usage of this discipline is the prediction of soccer match results, even if it can be applied with interesting results in different areas, such as analysis based on the player position information. In this paper, the authors propose an approach aimed to recognize the player position in a soccer match, predicting the specific zone in which the player is located in a specific moment. Similar objectives have not yet been considered. The authors consider supervised machine learning techniques by considering a dataset obtained through video capturing and tracking system. The data analyzed refer to several professional soccer games captured at the Alfheim Stadium in Tromso, Norway. The approach can be used in real time in order to verify if a player is playing according to the guidelines of the coach. In the experimental analysis, three different types of classification have been performed (i.e., three different divisions of the field), reaching the best results with random tree algorithm.

Machine Learning on Soccer Player Positions

Umberto Di Giacomo
;
Francesco Mercaldo;Antonella Santone;Giovanni Capobianco
2022-01-01

Abstract

During the last few years, sports analytics has been growing rapidly. The main usage of this discipline is the prediction of soccer match results, even if it can be applied with interesting results in different areas, such as analysis based on the player position information. In this paper, the authors propose an approach aimed to recognize the player position in a soccer match, predicting the specific zone in which the player is located in a specific moment. Similar objectives have not yet been considered. The authors consider supervised machine learning techniques by considering a dataset obtained through video capturing and tracking system. The data analyzed refer to several professional soccer games captured at the Alfheim Stadium in Tromso, Norway. The approach can be used in real time in order to verify if a player is playing according to the guidelines of the coach. In the experimental analysis, three different types of classification have been performed (i.e., three different divisions of the field), reaching the best results with random tree algorithm.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/113027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact