Past mining extraction activities still have a negative impact in the present time, the resulting metal(loid) contaminated soils affecting both the environment and human health. Assisted phytostabilization technology, combining soil conditioner application to immobilize metal(loid)s and plant growth to reduce erosion and leaching risks, is a useful strategy in the restoration of metal(loid) contaminated lands. However, contaminants will respond differently to a particular amendment, having their own specific characteristics. Therefore, in multi-contaminated soils, soil conditioner combination has been suggested as a good strategy for metal(loid) immobilization. In the present study, in a mesocosm experiment, organic (biochar and manure) and inorganic (ochre) amendments were evaluated in single and combined applications for their effect on metal(loid) stabilization and Salix triandra growth improvement, in an arsenic and lead highly contaminated soil. Specifically, the effects of these amendments on soil properties, metal(loid) behavior, and plant growth were evaluated after they aged in the soil for 6 months. Results showed that all amendments, except biochar alone, could reduce soil acidity, with the best outcomes obtained with the three amendments combined. The combination of the three soil conditioners has also led to reducing soil lead availability. However, only ochre, alone or combined with the other soil fertilizers, was capable of immobilizing arsenic. Moreover, amendment application enhanced plant growth, without affecting arsenic accumulation. On the contrary, plants grown on all the amended soils, except plants grown on soil added with manure alone, showed higher lead concentration in leaves, which poses a risk of return of lead into the soil when leaves will shed in autumn. Considering that the best plant growth improvement, together with the lowest increase in lead aerial accumulation, was observed in manure-treated soil, the addition of manure seems to have potential in the restoration of arsenic and lead contaminated soil.
Biochar, Ochre, and Manure Maturation in an Acidic Technosol Helps Stabilize As and Pb in Soil and Allows Its Vegetation by Salix triandra
Simiele M.;Lebrun M.;Trupiano D.;Scippa G. S.;Morabito D.
2022-01-01
Abstract
Past mining extraction activities still have a negative impact in the present time, the resulting metal(loid) contaminated soils affecting both the environment and human health. Assisted phytostabilization technology, combining soil conditioner application to immobilize metal(loid)s and plant growth to reduce erosion and leaching risks, is a useful strategy in the restoration of metal(loid) contaminated lands. However, contaminants will respond differently to a particular amendment, having their own specific characteristics. Therefore, in multi-contaminated soils, soil conditioner combination has been suggested as a good strategy for metal(loid) immobilization. In the present study, in a mesocosm experiment, organic (biochar and manure) and inorganic (ochre) amendments were evaluated in single and combined applications for their effect on metal(loid) stabilization and Salix triandra growth improvement, in an arsenic and lead highly contaminated soil. Specifically, the effects of these amendments on soil properties, metal(loid) behavior, and plant growth were evaluated after they aged in the soil for 6 months. Results showed that all amendments, except biochar alone, could reduce soil acidity, with the best outcomes obtained with the three amendments combined. The combination of the three soil conditioners has also led to reducing soil lead availability. However, only ochre, alone or combined with the other soil fertilizers, was capable of immobilizing arsenic. Moreover, amendment application enhanced plant growth, without affecting arsenic accumulation. On the contrary, plants grown on all the amended soils, except plants grown on soil added with manure alone, showed higher lead concentration in leaves, which poses a risk of return of lead into the soil when leaves will shed in autumn. Considering that the best plant growth improvement, together with the lowest increase in lead aerial accumulation, was observed in manure-treated soil, the addition of manure seems to have potential in the restoration of arsenic and lead contaminated soil.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.