Abstarct Of various proposed alternatives to autogenous bone, a synthetic, degradable copolymer of PLA-GLA and dextrane seems to be a promising biomaterial for maxillary sinus lift. Consecutive partially edentulous patients showing severe monolateral posterior maxillary atrophy were treated via sinus lift using PLA-GLA-dextrane copolymer as the sole filler. Delayed implant positioning was performed and cores of regenerated tissues and native bone controls were retrieved and evaluated by light and electron microscopy, histomorphometry, microhardness and qualitative X-ray analysis. Seven sinuses in 7 patients were augmented with PLA-GLA-dextrane copolymer. Six to nine months after the copolymer ‘graft’, 17 bone cores were retrieved: all histological sections contained newly synthesized, mineralized material and new bone in various stages of development. Histomorphometry revealed average Trabecular Bone Volume (TBV) values ranging from 51% (6 months) to 77% (9 months). Backscattered scanning electron microscopy (BSE) in experimental and control samples confirmed histology findings. Microhardness values suggested newly formed bone at nine months was not as hard as native bone. Ca and P content was similar in 9-month regenerated and native bone. Seventeen implants were inserted in the second stage of surgery: resulting Implant Success (SR) and Cumulative Success (CSR) up to 3 years were 100% following Albrektsson’s criteria. Sinus lift augmentation using PLA-GLA-dextrane copolymer as the sole filler resulted in uneventful surgeries. New bone formation was evident histologically and its maturation was still in progress after 9 months. Successful, staged implant positioning was achieved in regenerated tissue. Key words: sinus lift, PLA-GLA-dextrane copolymer, histomorphometric analysis, microhardness, X-ray microanalysis
Histological and clinical survey of polylactic-polyglycolic acid and dextrane copolymer in maxillary sinus lift: a pilot in vivo study
SBORDONE C;SBORDONE, Ludovico
2008-01-01
Abstract
Abstarct Of various proposed alternatives to autogenous bone, a synthetic, degradable copolymer of PLA-GLA and dextrane seems to be a promising biomaterial for maxillary sinus lift. Consecutive partially edentulous patients showing severe monolateral posterior maxillary atrophy were treated via sinus lift using PLA-GLA-dextrane copolymer as the sole filler. Delayed implant positioning was performed and cores of regenerated tissues and native bone controls were retrieved and evaluated by light and electron microscopy, histomorphometry, microhardness and qualitative X-ray analysis. Seven sinuses in 7 patients were augmented with PLA-GLA-dextrane copolymer. Six to nine months after the copolymer ‘graft’, 17 bone cores were retrieved: all histological sections contained newly synthesized, mineralized material and new bone in various stages of development. Histomorphometry revealed average Trabecular Bone Volume (TBV) values ranging from 51% (6 months) to 77% (9 months). Backscattered scanning electron microscopy (BSE) in experimental and control samples confirmed histology findings. Microhardness values suggested newly formed bone at nine months was not as hard as native bone. Ca and P content was similar in 9-month regenerated and native bone. Seventeen implants were inserted in the second stage of surgery: resulting Implant Success (SR) and Cumulative Success (CSR) up to 3 years were 100% following Albrektsson’s criteria. Sinus lift augmentation using PLA-GLA-dextrane copolymer as the sole filler resulted in uneventful surgeries. New bone formation was evident histologically and its maturation was still in progress after 9 months. Successful, staged implant positioning was achieved in regenerated tissue. Key words: sinus lift, PLA-GLA-dextrane copolymer, histomorphometric analysis, microhardness, X-ray microanalysisI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.