Reusable water bottles are growing in popularity; thus, possible chemical release from the internal surface into water should be carefully considered to control related health risks. We experi- mentally evaluated the release into deionized water of 40 elements, six phthalates, and bisphenol-A for 20 different reusable bottles by simulating the use in real world scenario. The 20 bottles, identified as those most purchased in Italy, were made of various materials (stainless steel, aluminum, plastic, and silicone). The experiment was carried out for four consecutive weeks in duplicate for each type of bottle. Our results showed the release, to various extents, of inorganic elements from all 20 bottles, while the release of phthalates and bisphenol-A was never found. The elements most frequently released were Al, Sr, Mo, and Cr, while the highest concentrations were for Ca, K, Mg, and Na; the release of toxic elements (such as Pb, Cd, Ni, Sb) also occurred. The comparison of our results with regulatory limits on drinking water quality revealed no exceeding values except for Al. However, these releases represent a further intake, and the related risks cannot be neglected, especially for highly susceptible populations. Thus, it is essential to correctly inform consumers both with dedicated interventions and exhaustive labelling.

Reusable Water Bottles: Release of Inorganic Elements, Phthalates, and Bisphenol A in a “Real Use” Simulation Experiment

Avino Pasquale;
2021-01-01

Abstract

Reusable water bottles are growing in popularity; thus, possible chemical release from the internal surface into water should be carefully considered to control related health risks. We experi- mentally evaluated the release into deionized water of 40 elements, six phthalates, and bisphenol-A for 20 different reusable bottles by simulating the use in real world scenario. The 20 bottles, identified as those most purchased in Italy, were made of various materials (stainless steel, aluminum, plastic, and silicone). The experiment was carried out for four consecutive weeks in duplicate for each type of bottle. Our results showed the release, to various extents, of inorganic elements from all 20 bottles, while the release of phthalates and bisphenol-A was never found. The elements most frequently released were Al, Sr, Mo, and Cr, while the highest concentrations were for Ca, K, Mg, and Na; the release of toxic elements (such as Pb, Cd, Ni, Sb) also occurred. The comparison of our results with regulatory limits on drinking water quality revealed no exceeding values except for Al. However, these releases represent a further intake, and the related risks cannot be neglected, especially for highly susceptible populations. Thus, it is essential to correctly inform consumers both with dedicated interventions and exhaustive labelling.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/102151
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact