Sequentialization translates concurrent programs into equivalent nondeterministic sequential programs so that the different concurrent schedules no longer need to be handled explicitly. However, existing sequentializations assume sequential consistency, which modern hardware architectures no longer guarantee. Here we describe a new approach to embed weak memory models within eager sequentializations. Our approach is based on the separation of intra-thread computations from inter-thread communications by means of a shared memory abstraction (SMA). We give details of SMA implementations for the SC, TSO, and PSO memory models that are based on the idea of individual memory unwindings. We use our approach to implement a new, efficient BMC-based bug finding tool for multi-threaded C programs under SC, TSO, or PSO based on these SMAs, and show experimentally that it is competitive to existing tools.
Using Shared Memory Abstractions to Design Eager Sequentializations for Weak Memory Models
Parlato G
2017-01-01
Abstract
Sequentialization translates concurrent programs into equivalent nondeterministic sequential programs so that the different concurrent schedules no longer need to be handled explicitly. However, existing sequentializations assume sequential consistency, which modern hardware architectures no longer guarantee. Here we describe a new approach to embed weak memory models within eager sequentializations. Our approach is based on the separation of intra-thread computations from inter-thread communications by means of a shared memory abstraction (SMA). We give details of SMA implementations for the SC, TSO, and PSO memory models that are based on the idea of individual memory unwindings. We use our approach to implement a new, efficient BMC-based bug finding tool for multi-threaded C programs under SC, TSO, or PSO based on these SMAs, and show experimentally that it is competitive to existing tools.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.