We define a new logic, STRAND, that allows reasoning with heap-manipulating programs using deductive verification and SMT solvers. STRAND logic ("STRucture ANd Data" logic) formulas express constraints involving heap structures and the data they contain; they are defined over a class of pointer-structures R defined using MSO-defined relations over trees, and are of the form ∃→x∀→y (→x,→) x" , where "φ" is a monadic second-order logic (MSO) formulawith additional quantification that combines structural constraints as well as data-constraints, but where the data-constraints are only allowed to refer to "→x" and "→y" The salient aspects of the logic are: (a) the logic is powerful, allowing existential and universal quantification over the nodes, and complex combinations of data and structural constraints; (b) checking Hoare-triples for linear blocks of statements with pre-conditions and post-conditions expressed as Boolean combinations of existential and universal STRAND formulas reduces to satisfiability of a STRAND formula; (c) there are powerful decidable fragments of STRAND, one semantically defined and one syntactically defined, where the decision procedure works by combining the theory of MSO over trees and the quantifier-free theory of the underlying data-logic. We demonstrate the effectiveness and practicality of the logic by checking verification conditions generated in proving properties of several heap-manipulating programs, using a tool that combines an MSO decision procedure over trees (MONA) with an SMT solver for integer constraints (Z3).

Decidable logics combining heap structures and data

PARLATO G;
2011-01-01

Abstract

We define a new logic, STRAND, that allows reasoning with heap-manipulating programs using deductive verification and SMT solvers. STRAND logic ("STRucture ANd Data" logic) formulas express constraints involving heap structures and the data they contain; they are defined over a class of pointer-structures R defined using MSO-defined relations over trees, and are of the form ∃→x∀→y (→x,→) x" , where "φ" is a monadic second-order logic (MSO) formulawith additional quantification that combines structural constraints as well as data-constraints, but where the data-constraints are only allowed to refer to "→x" and "→y" The salient aspects of the logic are: (a) the logic is powerful, allowing existential and universal quantification over the nodes, and complex combinations of data and structural constraints; (b) checking Hoare-triples for linear blocks of statements with pre-conditions and post-conditions expressed as Boolean combinations of existential and universal STRAND formulas reduces to satisfiability of a STRAND formula; (c) there are powerful decidable fragments of STRAND, one semantically defined and one syntactically defined, where the decision procedure works by combining the theory of MSO over trees and the quantifier-free theory of the underlying data-logic. We demonstrate the effectiveness and practicality of the logic by checking verification conditions generated in proving properties of several heap-manipulating programs, using a tool that combines an MSO decision procedure over trees (MONA) with an SMT solver for integer constraints (Z3).
2011
978-1-4503-0490-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/88381
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 27
social impact