In the recent years, the issues of environmental changes received a well-justified attention from scientists and policy makers especially because several dramatic alterations have been recorded at ecosystem and species distribution level (Aber et al., 2001; Loreau et al., 2001). According to literature, global climate changes (Walther et al., 2002) and environmental pollution (Islam et al., 2004) are widely recognized as the most important causes of environmental alterations. In fact, it has been shown that environmental contamination by pollutants induces several diseases on plants, animals and human, representing with climate change, the most important cause of species extinction (Leduc et al., 2004). Often environmental changes become, for plants “stress conditions” (i.e. drought, salinity, extreme temperatures, pollutants or mechanical stress; Boyer, 1982). To forefront adverse conditions, plants have developed different adaptive strategies (Boyer, 1982; Nilsen and Orcutt et al., 1996; Borics et al., 2013) that include morphological, physiological, biochemical and molecular adjustments. Mechanisms that allow plants to withstand environmental stress has become an interesting field of scientific research. In fact, understanding how plants respond to stress conditions could be useful not only for plant biology advances, but also for improving the efficiency of strategies based on the use of plants for environmental changes mitigation (Mbow et al., 2014). This thesis presents a PhD research that focalized the attention on the molecular mechanism that allow woody perennial plants to forefront environmental changes, with a particular focus on mechanical and heavy metal stress. The first part of this thesis provides new insight about the complex and almost unknown molecular mechanisms regulating woody root responses to mechanical stress, that represents a really common environmental perturbation that considerably affect plant stability. By using a simple experimental system, a controlled simulation of mechanical stimuli was performed in Populus nigra roots. After analyzing the proteomic alteration and the involvement of auxin in poplar woody root subjected to bending stress, the attention was focalized on the role of miRNAs (microRNA) in regulating mechanical stress responses. By using a reverse transcription-quantitative PCR (RT-qPCR) approach, the study evaluated the expression level of five mechanically-induced miRNAs (ptc-miR162, ptc-miR164, ptc-miR172, ptc-miR408, ptc-miR473), previously identified in bent poplar stem by Lu et al., (2005). Moreover, the study provides the analysis of miRNAs cis-regulatory promoter elements and the computationally and experimentally prediction of miRNA target genes. A highly complex miRNAs expression pattern was recorded in poplars roots subjected to bending stress, showing that their expression is not only regulated by tension and compression forces (Trupiano et al., 2012 a, b), but also by other important process related to bending stress responses such as lateral root formation and lignin deposition. Since “rhizoremediation” represents a great challenge to phytoremediation purpose (Glick, 2003). Last part of the studies carried out in this thesis, were focused on plant-microbes interactions to remove heavy metal in polluted sites. Preliminary results are reported in this thesis where a strain belonging to Bacillus genus was isolated from a lead (Pb) and arsenic (As) polluted soil. This isolated strain showed the great capability to tolerate Pb and As exposure, and can be further used in association with several plants species for rhizoremediation purposes. In conclusion, results on molecular mechanisms involved in root response to mechanical stress, and the data on heavy metal bacteria strains although preliminar, provided by this thesis, contribute to widen the knowledge on the use of plants for environmental changes mitigation.
La problematica dei cambiamenti ambientali, alterando la funzionalità degli ecosistemi e la naturale distribuzione delle specie sul pianeta terra, ha destato negli ultimi anni una giustificata e crescente preoccupazione da parte della comunità scientifica e delle autorità locali (Aber et al., 2001; Loreau et al., 2001). Come ampiamente documentato in letteratura, i cambiamenti climatici e le varie forme di inquinamento ambientale rappresentano alcune tra le principali cause delle drammatiche alterazioni riscontrate a livello ambientale. Infatti, l’immissione nell’ambiente di sostanze tossiche può risultare letale per tutti gli esseri viventi che abitano il pianeta terra (piante, animali e uomo). Inoltre, assieme ai cambiamenti climatici mondiali, l’inquinamento ambientale è stato identificato dalla comunità scientifica come una delle principali cause dell’estinzione delle specie (Leduc et al., 2004). Spesso i cambiamenti ambientali possono divenire fattori di stress per le piante (es. siccità, salinità, inquinanti o stress meccanico; Boyer, 1982). Nonostante ciò, queste ultime, per resistere e adattarsi a condizioni ambientali avverse, hanno sviluppato differenti strategie di risposta (Boyer, 1982; Nilsen and Orcutt et al., 1996; Borics et al., 2013) che comprendono vari adattamenti morfologici, fisiologici, biochimici e molecolari. Lo studio dei meccanismi di risposta delle piante agli stress ambientali è diventato negli ultimi anni oggetto di una intensa attività di ricerca in quanto approfondire i meccanismi che consentono alla specie vegetali di fronteggiare condizioni ambientali avverse può contribuire non solo ad ampliare le conoscenze inerenti alla biologia vegetale di base ma anche ad implementare l’efficienza delle strategie basate sull’ uso delle piante per la mitigazione degli stress ambientali (Mbow et al., 2014). La ricerca di base presentata in questa tesi di dottorato ha come principale oggetto di studio l’analisi dei meccanismi molecolari di risposta di specie arboree perenni agli stress ambientali. In particolare, l’attenzione è stata focalizzata sullo stress meccanico e sullo stress da metalli pesanti. La prima parte di questa tesi fornisce nuove informazioni sul complesso e ancora poco conosciuto meccanismo molecolare che modula la risposta dei sistemi radicali di specie arboree perenni allo stress meccanico. Quest’ultimo rappresenta una tipologia di stress ambientale molto comune in natura che può condizionare drammaticamente la crescita, lo sviluppo e la stabilità delle piante. Nel dettaglio, in questo studio, mediante un semplice sistema sperimentale (Trupiano et al 2012a, b) è stato possibile simulare lo stress meccanico in radici di Populus nigra. Per approfondire i meccanismi molecolari di risposta allo stress meccanico, sono state prima valutate le variazioni proteomiche e il ruolo dell’ormone vegetale auxina e successivamente sono stati valutati i livelli di espressione di alcuni miRNAs (micro RNAs) in risposta allo stress meccanico. Utilizzando la tecnica denominata reverse transcription-quantitative PCR (RT-qPCR) è stato possibile valutare i livelli di espressione di cinque miRNAs (ptc-miR162, ptc-miR164, ptc-miR172, ptc-miR408, ptc-miR473) precedentemente identificatiti da Lu et al., (2005) in fusti di piante di pioppo sottoposte a stress meccanico. Inoltre, lo studio presentato in questa tesi fornisce l’analisi dei cis-regulatory promoter elements e la predizione computazionale e sperimentale dei geni target dei cinque miRNAs precedentemente valutati. I risultati ottenuti in questa tesi permettono di evidenziare che il pattern di espressione dei cinque miRNAs valutati non è regolato solamente dalle forze di compressione e tensione che si generano lungo la radice soggetta a stress da piegamento (Trupiano et al., 2012 a, b), ma anche da altri importanti processi quali la formazione di radici laterali e la deposizione di lignina. Dopo aver focalizzato l’attenzione sullo stress meccanico, nella seconda parte di questa tesi è stata affrontata la tematica del rizorimedio che rappresenta un’importante strategia incentrata sulle interazioni pianta-microrganismo per ridurre le concentrazioni di metalli pesanti da siti contaminati (Glick, 2003). I risultati preliminari dello studio dimostrano che un ceppo microbico appartenente al genere Bacillus isolato da un campione di suolo contaminato da piombo (Pb) e arsenico (As) mostra una grande capacità di tollerare l’esposizione ad arsenico e piombo e che potrebbe per questo essere utilizzato in futuro in associazione con diverse specie vegetali per diminuire le concentrazioni di metalli pesanti da suoli inquinati. In conclusione, i risultati inerenti i meccanismi molecolari sulla risposta delle radici di specie arboree perenni allo stress meccanico e i dati ottenuti sui batteri resistenti ai metalli pesanti contribuiranno ad ampliare le conoscenze sull’ uso delle specie vegetali per la mitigazione dei cambiamenti ambientali.
Analysis of poplar plants responses to environmental stress conditions
ROSSI, Miriam
2017-09-15
Abstract
In the recent years, the issues of environmental changes received a well-justified attention from scientists and policy makers especially because several dramatic alterations have been recorded at ecosystem and species distribution level (Aber et al., 2001; Loreau et al., 2001). According to literature, global climate changes (Walther et al., 2002) and environmental pollution (Islam et al., 2004) are widely recognized as the most important causes of environmental alterations. In fact, it has been shown that environmental contamination by pollutants induces several diseases on plants, animals and human, representing with climate change, the most important cause of species extinction (Leduc et al., 2004). Often environmental changes become, for plants “stress conditions” (i.e. drought, salinity, extreme temperatures, pollutants or mechanical stress; Boyer, 1982). To forefront adverse conditions, plants have developed different adaptive strategies (Boyer, 1982; Nilsen and Orcutt et al., 1996; Borics et al., 2013) that include morphological, physiological, biochemical and molecular adjustments. Mechanisms that allow plants to withstand environmental stress has become an interesting field of scientific research. In fact, understanding how plants respond to stress conditions could be useful not only for plant biology advances, but also for improving the efficiency of strategies based on the use of plants for environmental changes mitigation (Mbow et al., 2014). This thesis presents a PhD research that focalized the attention on the molecular mechanism that allow woody perennial plants to forefront environmental changes, with a particular focus on mechanical and heavy metal stress. The first part of this thesis provides new insight about the complex and almost unknown molecular mechanisms regulating woody root responses to mechanical stress, that represents a really common environmental perturbation that considerably affect plant stability. By using a simple experimental system, a controlled simulation of mechanical stimuli was performed in Populus nigra roots. After analyzing the proteomic alteration and the involvement of auxin in poplar woody root subjected to bending stress, the attention was focalized on the role of miRNAs (microRNA) in regulating mechanical stress responses. By using a reverse transcription-quantitative PCR (RT-qPCR) approach, the study evaluated the expression level of five mechanically-induced miRNAs (ptc-miR162, ptc-miR164, ptc-miR172, ptc-miR408, ptc-miR473), previously identified in bent poplar stem by Lu et al., (2005). Moreover, the study provides the analysis of miRNAs cis-regulatory promoter elements and the computationally and experimentally prediction of miRNA target genes. A highly complex miRNAs expression pattern was recorded in poplars roots subjected to bending stress, showing that their expression is not only regulated by tension and compression forces (Trupiano et al., 2012 a, b), but also by other important process related to bending stress responses such as lateral root formation and lignin deposition. Since “rhizoremediation” represents a great challenge to phytoremediation purpose (Glick, 2003). Last part of the studies carried out in this thesis, were focused on plant-microbes interactions to remove heavy metal in polluted sites. Preliminary results are reported in this thesis where a strain belonging to Bacillus genus was isolated from a lead (Pb) and arsenic (As) polluted soil. This isolated strain showed the great capability to tolerate Pb and As exposure, and can be further used in association with several plants species for rhizoremediation purposes. In conclusion, results on molecular mechanisms involved in root response to mechanical stress, and the data on heavy metal bacteria strains although preliminar, provided by this thesis, contribute to widen the knowledge on the use of plants for environmental changes mitigation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.