The processing of Amyloid-β Protein Precursor (APP) by β- and γ-secretases is a pivotal event in the genesis of Alzheimer's Disease (AD). Familial forms of AD are principally caused by mutations or deletions in presenilin 1 and 2 genes: the catalytic components of the proteolytic enzyme γ-secretase (GS). The "amyloid hypothesis" states that the aberrant processing of APP by GS induces the formation of specific neurotoxic soluble amyloid-β (Aβ) peptides which, in turn, cause neurodegeneration. This theory, however, has recently evidenced significant limitations and, in particular, the following issues are debated: 1) the concept and significance of GS "gain-of-function" vs. "loss-of-function"; 2) the presence of several and various GS substrates, which interact with APP and may influence Aβ formation. The latter consideration is suggestive: despite the increasing number of GS substrates so far identified, their reciprocal interaction with APP, in the AD field, is significantly unexplored. We investigated a new hypothesis: the possibility that APP is co-processed by GS with a second receptor and that a putative GS “loss-of-function” would affect the second receptor, rather than APP, thereafter, inducing neurodegeneration hampering its signaling/activity. Among almost 90 different GS substrates, we focus our attention on Low-Density Lipoprotein Receptor-Related Protein 8 (LRP8), which has the following features: 1) it is an APP interactor; 2) it is expressed at neuronal level; 3) it is a receptor of ApoE, which is the most important risk factor for developing AD; 4) it is involved in signalling activities compatible with neuronal migration or cell proliferation and memory processes. Firstly, we studied LRP8 processing in post-mortem brain from control non-demented, sporadic AD (SAD) and familial AD (FAD) subjects, carrying PSEN1 mutations. WB experiments show that in SAD and FAD subjects there is a significant presence of LRP8 C-terminal fragments (LICDs), ranging from 8 to 12 kDa, and a parallel decrease of the full length (without total variation of LRP8 protein expression) in comparison to control cases. Immunohistochemical analysis in the same brain areas shows an abundant LRP8 neuronal localization in controls, which is almost absent in AD patients where, instead, there is a diffuse LRP8 parenchymal staining. Furthermore, we analyzed ventricular cerebrospinal fluid and plasma, detecting LICDs in subjects with mild-cognitive impairment, SAD and FAD patients, but not in control patients. The same feature identified in AD brains is detectable in cultured cells when GS is blocked using specific drugs (YO01027, LY450139, BMS708163 and DAPT) or in cells in which PSENs are KO. Interestingly, adding a relatively a-specific inhibitor of proteasome and other proteases ALLN we blocked the in vitro formation of LICDs.These data strongly suggest that LICDs may be produced by a non-GS activity and can be over-produced when GS activity is reduced or hampered. To further explore the involvement of other proteases in LICDs formation, we studied the expression in cerebral cortex of normal and AD patients of 8 proteases that could cleave LRP8 in the C-terminal. Results reveal the significant mRNAs overexpression of ADAM10, ADAMTS1, Cathepsin D and Meprin  (but not of ADAM17, Cathepsin L, Meprin  and MMP9) and protein overexpression of ADAMTS1, pro-Cathepsin D, Cathpesin D and Meprin  in AD subjects, suggesting the presence of transcriptional events that may modulate proteases expression during AD. In conclusion, in this thesis we show that LRP8, an ApoE receptor involved in memory formation, is over-processed during AD and when GS is blocked (likely mediated by other proteases), with the reduction of LRP8 holoprotein and the consequent increment of LICDs. Therefore, our finding corroborates the idea that, in case of a loss-of-function of PSENs, other GS substrates, besides APP, undergo heavy changes: whether these alterations are either diagnostic or directly related to the etiology of the disease is yet to be determined.

Il processing della Proteina Precorritrice della β Amiloide (APP) da parte delle β- e γ-secretasi è un evento cruciale nella genesi della malattia di Alzheimer (AD). Oltre alle mutazioni su APP, le forme familiari dell’AD sono spesso causate da mutazioni o delezioni nei geni presenilina 1 e 2, i componenti catalitici dell'enzima γ-secretasi (GS). "L'ipotesi dell'amiloide" afferma che il processing aberrante di APP da parte di GS induce la formazione di peptidi solubili e neurotossici di β amiloide (Aβ) che contribuiscono alla neurodegenerazione. Questa teoria, tuttavia, ha recentemente evidenziato dei limiti significativi: 1) il concetto di "guadagno di funzione" rispetto a quello di "perdita di funzione" di presenilina; 2) la presenza di numerosi substrati di GS, che interagiscono con APP e che possono influenzare la formazione di Aβ. Nonostante il numero crescente di substrati di GS finora identificati, la loro reciproca interazione con APP è praticamente inesplorata. In questa tesi abbiamo valutato una nuova ipotesi: la possibilità che APP venga co-processata da GS con un secondo recettore e che una putativa "perdita di funzione" di GS possa influenzare anche il secondo recettore, inducendo neurodegenerazione e ostacolandone il signaling. Tra i quasi 90 substrati di GS, abbiamo individuato il Low-Density Lipoprotein Receptor-Related Protein 8 (LRP8), che ha le seguenti caratteristiche: 1) interagisce con APP; 2) è espresso a livello neuronale; 3) è un recettore di ApoE, il più importante fattore di rischio per lo sviluppo dell’AD; 4) è coinvolto nei processi di migrazione neuronale, di proliferazione e della memoria. A tale scopo, abbiamo studiato il processing di LRP8 nei cervelli post-mortem di soggetti controllo, con AD sporadica (SAD) e con AD familiare (FAD), portatori di mutazioni su presenilina 1. I dati mostrano che nei soggetti con SAD e FAD esiste una significativa presenza di frammenti C-terminali di LRP8 (LICDs) e una diminuzione parallela della proteina intera (senza variazione totale dell'espressione della proteina LRP8) rispetto ai casi di controllo. L'analisi immunoistochimica mostra nei controlli una localizzazione neuronale di LRP8, che è quasi assente nei pazienti con AD, dove, invece, c'è una colorazione parenchimale diffusa di LRP8. Inoltre, abbiamo analizzato liquor ventricolari e plasma, rilevando gli LICDs nei pazienti con una lieve compromissione cognitiva, SAD e FAD, ma non nei soggetti controllo. Il medesimo processing di LRP8 identificato nei cervelli con AD è rilevabile in vitro quando GS viene bloccata, utilizzando specifici inibitori (YO01027, LY450139, BMS708163 e DAPT), o in cellule in cui le preseniline sono KO. È interessante notare che ALLN, un inibitore del proteasoma e di altre proteasi, blocca la formazione di LICDs, aumentandone i precursori. Complessivamente questi dati suggeriscono fortemente che gli LICDs non siano prodotti da GS. Per esplorare ulteriormente il coinvolgimento di altre proteasi nella formazione degli LICDs, abbiamo identificato 8 proteasi che potrebbero tagliare la porzione intracellulare di LRP8 e ne abbiamo studiato la loro espressione nella corteccia cerebrale di pazienti normali e con AD. I risultati rivelano la significativa overespressione a livello di mRNA di ADAM10, ADAMTS1, Catepsina D e Meprin  (ma non di ADAM17, Catepsina L, Meprin  e MMP9) e a livello proteico di ADAMTS1, pro Catepsina D, Catepsina D e Meprin  nei soggetti con AD e pazienti non dementi, suggerendo la presenza di eventi trascrizionali che modulano l'espressione delle proteasi durante l'AD. In conclusione, il nostro studio mostra che LRP8, recettore di ApoE coinvolto nei processi di formazione della memoria, viene over-processato in corso di AD e quando GS viene bloccata, con conseguente riduzione del recettore intero e aumento degli LICDs. Il nostro studio alimenta l'idea che, durante l’AD (perdita di funzione di GS), altri substrati (come LRP8), oltre ad APP, subiscano marcate alterazioni: se tali alterazioni siano diagnostiche o coinvolte nella genesi della malattia è ancora da stabilire.

Study on proteases involvement in dual processing of low-density lipoprotein receptor-related protein 8 in Alzheimer's Disease

Medoro, Alessandro
2018-03-20

Abstract

The processing of Amyloid-β Protein Precursor (APP) by β- and γ-secretases is a pivotal event in the genesis of Alzheimer's Disease (AD). Familial forms of AD are principally caused by mutations or deletions in presenilin 1 and 2 genes: the catalytic components of the proteolytic enzyme γ-secretase (GS). The "amyloid hypothesis" states that the aberrant processing of APP by GS induces the formation of specific neurotoxic soluble amyloid-β (Aβ) peptides which, in turn, cause neurodegeneration. This theory, however, has recently evidenced significant limitations and, in particular, the following issues are debated: 1) the concept and significance of GS "gain-of-function" vs. "loss-of-function"; 2) the presence of several and various GS substrates, which interact with APP and may influence Aβ formation. The latter consideration is suggestive: despite the increasing number of GS substrates so far identified, their reciprocal interaction with APP, in the AD field, is significantly unexplored. We investigated a new hypothesis: the possibility that APP is co-processed by GS with a second receptor and that a putative GS “loss-of-function” would affect the second receptor, rather than APP, thereafter, inducing neurodegeneration hampering its signaling/activity. Among almost 90 different GS substrates, we focus our attention on Low-Density Lipoprotein Receptor-Related Protein 8 (LRP8), which has the following features: 1) it is an APP interactor; 2) it is expressed at neuronal level; 3) it is a receptor of ApoE, which is the most important risk factor for developing AD; 4) it is involved in signalling activities compatible with neuronal migration or cell proliferation and memory processes. Firstly, we studied LRP8 processing in post-mortem brain from control non-demented, sporadic AD (SAD) and familial AD (FAD) subjects, carrying PSEN1 mutations. WB experiments show that in SAD and FAD subjects there is a significant presence of LRP8 C-terminal fragments (LICDs), ranging from 8 to 12 kDa, and a parallel decrease of the full length (without total variation of LRP8 protein expression) in comparison to control cases. Immunohistochemical analysis in the same brain areas shows an abundant LRP8 neuronal localization in controls, which is almost absent in AD patients where, instead, there is a diffuse LRP8 parenchymal staining. Furthermore, we analyzed ventricular cerebrospinal fluid and plasma, detecting LICDs in subjects with mild-cognitive impairment, SAD and FAD patients, but not in control patients. The same feature identified in AD brains is detectable in cultured cells when GS is blocked using specific drugs (YO01027, LY450139, BMS708163 and DAPT) or in cells in which PSENs are KO. Interestingly, adding a relatively a-specific inhibitor of proteasome and other proteases ALLN we blocked the in vitro formation of LICDs.These data strongly suggest that LICDs may be produced by a non-GS activity and can be over-produced when GS activity is reduced or hampered. To further explore the involvement of other proteases in LICDs formation, we studied the expression in cerebral cortex of normal and AD patients of 8 proteases that could cleave LRP8 in the C-terminal. Results reveal the significant mRNAs overexpression of ADAM10, ADAMTS1, Cathepsin D and Meprin  (but not of ADAM17, Cathepsin L, Meprin  and MMP9) and protein overexpression of ADAMTS1, pro-Cathepsin D, Cathpesin D and Meprin  in AD subjects, suggesting the presence of transcriptional events that may modulate proteases expression during AD. In conclusion, in this thesis we show that LRP8, an ApoE receptor involved in memory formation, is over-processed during AD and when GS is blocked (likely mediated by other proteases), with the reduction of LRP8 holoprotein and the consequent increment of LICDs. Therefore, our finding corroborates the idea that, in case of a loss-of-function of PSENs, other GS substrates, besides APP, undergo heavy changes: whether these alterations are either diagnostic or directly related to the etiology of the disease is yet to be determined.
20-mar-2018
Il processing della Proteina Precorritrice della β Amiloide (APP) da parte delle β- e γ-secretasi è un evento cruciale nella genesi della malattia di Alzheimer (AD). Oltre alle mutazioni su APP, le forme familiari dell’AD sono spesso causate da mutazioni o delezioni nei geni presenilina 1 e 2, i componenti catalitici dell'enzima γ-secretasi (GS). "L'ipotesi dell'amiloide" afferma che il processing aberrante di APP da parte di GS induce la formazione di peptidi solubili e neurotossici di β amiloide (Aβ) che contribuiscono alla neurodegenerazione. Questa teoria, tuttavia, ha recentemente evidenziato dei limiti significativi: 1) il concetto di "guadagno di funzione" rispetto a quello di "perdita di funzione" di presenilina; 2) la presenza di numerosi substrati di GS, che interagiscono con APP e che possono influenzare la formazione di Aβ. Nonostante il numero crescente di substrati di GS finora identificati, la loro reciproca interazione con APP è praticamente inesplorata. In questa tesi abbiamo valutato una nuova ipotesi: la possibilità che APP venga co-processata da GS con un secondo recettore e che una putativa "perdita di funzione" di GS possa influenzare anche il secondo recettore, inducendo neurodegenerazione e ostacolandone il signaling. Tra i quasi 90 substrati di GS, abbiamo individuato il Low-Density Lipoprotein Receptor-Related Protein 8 (LRP8), che ha le seguenti caratteristiche: 1) interagisce con APP; 2) è espresso a livello neuronale; 3) è un recettore di ApoE, il più importante fattore di rischio per lo sviluppo dell’AD; 4) è coinvolto nei processi di migrazione neuronale, di proliferazione e della memoria. A tale scopo, abbiamo studiato il processing di LRP8 nei cervelli post-mortem di soggetti controllo, con AD sporadica (SAD) e con AD familiare (FAD), portatori di mutazioni su presenilina 1. I dati mostrano che nei soggetti con SAD e FAD esiste una significativa presenza di frammenti C-terminali di LRP8 (LICDs) e una diminuzione parallela della proteina intera (senza variazione totale dell'espressione della proteina LRP8) rispetto ai casi di controllo. L'analisi immunoistochimica mostra nei controlli una localizzazione neuronale di LRP8, che è quasi assente nei pazienti con AD, dove, invece, c'è una colorazione parenchimale diffusa di LRP8. Inoltre, abbiamo analizzato liquor ventricolari e plasma, rilevando gli LICDs nei pazienti con una lieve compromissione cognitiva, SAD e FAD, ma non nei soggetti controllo. Il medesimo processing di LRP8 identificato nei cervelli con AD è rilevabile in vitro quando GS viene bloccata, utilizzando specifici inibitori (YO01027, LY450139, BMS708163 e DAPT), o in cellule in cui le preseniline sono KO. È interessante notare che ALLN, un inibitore del proteasoma e di altre proteasi, blocca la formazione di LICDs, aumentandone i precursori. Complessivamente questi dati suggeriscono fortemente che gli LICDs non siano prodotti da GS. Per esplorare ulteriormente il coinvolgimento di altre proteasi nella formazione degli LICDs, abbiamo identificato 8 proteasi che potrebbero tagliare la porzione intracellulare di LRP8 e ne abbiamo studiato la loro espressione nella corteccia cerebrale di pazienti normali e con AD. I risultati rivelano la significativa overespressione a livello di mRNA di ADAM10, ADAMTS1, Catepsina D e Meprin  (ma non di ADAM17, Catepsina L, Meprin  e MMP9) e a livello proteico di ADAMTS1, pro Catepsina D, Catepsina D e Meprin  nei soggetti con AD e pazienti non dementi, suggerendo la presenza di eventi trascrizionali che modulano l'espressione delle proteasi durante l'AD. In conclusione, il nostro studio mostra che LRP8, recettore di ApoE coinvolto nei processi di formazione della memoria, viene over-processato in corso di AD e quando GS viene bloccata, con conseguente riduzione del recettore intero e aumento degli LICDs. Il nostro studio alimenta l'idea che, durante l’AD (perdita di funzione di GS), altri substrati (come LRP8), oltre ad APP, subiscano marcate alterazioni: se tali alterazioni siano diagnostiche o coinvolte nella genesi della malattia è ancora da stabilire.
Alzheimer's Disease; Gamma secretase; LRPd; Proteases
File in questo prodotto:
File Dimensione Formato  
Tesi_A_Medoro.pdf

Open Access dal 21/09/2019

Descrizione: Tesi di Dottorato
Dimensione 16.11 MB
Formato Adobe PDF
16.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/100933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact