A preliminary discrete numerical model of a REV at the front region of an erosion pipe in a cohesive granular soil is briefly presented. The results reported herein refer to a simulation carried out by coupling the Discrete Element Method (DEM) with the Lattice Boltzmann Method (LBM) for the representation of the granular and fluid phases, respectively. The numerical specimen, consisiting of bonded grains, is tested under fully-saturated conditions and increasing pressure difference between the inlet (confined) and the outlet (unconfined) flow regions. The key role of compression arches of force chains that transversely cross the sample and carry most part of the hydrodynamic actions is pointed out. These arches partition the REV into an upstream region that remains almost intact and a downstream region that gradually degrades and is subsequently eroded in the form of a cluster. Eventually, the collapse of the compression arches causes the upstream region to be also eroded, abruptly, as a whole. A complete presentation of the numerical model and of the results of the simulation can be found in [12].
Discrete modelling of front propagation in backward piping erosion
CALLARI, Carlo;
2017-01-01
Abstract
A preliminary discrete numerical model of a REV at the front region of an erosion pipe in a cohesive granular soil is briefly presented. The results reported herein refer to a simulation carried out by coupling the Discrete Element Method (DEM) with the Lattice Boltzmann Method (LBM) for the representation of the granular and fluid phases, respectively. The numerical specimen, consisiting of bonded grains, is tested under fully-saturated conditions and increasing pressure difference between the inlet (confined) and the outlet (unconfined) flow regions. The key role of compression arches of force chains that transversely cross the sample and carry most part of the hydrodynamic actions is pointed out. These arches partition the REV into an upstream region that remains almost intact and a downstream region that gradually degrades and is subsequently eroded in the form of a cluster. Eventually, the collapse of the compression arches causes the upstream region to be also eroded, abruptly, as a whole. A complete presentation of the numerical model and of the results of the simulation can be found in [12].I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.