: Aerobic glycolysis has been commonly linked to cell proliferation, especially in cancer cells where it serves to generate sufficient energy and biosynthesis of new cell constituents needed for cell growth and division. The M2 isoform of pyruvate kinase (PKM2) catalyzes the last reaction of the glycolytic process. PKM2 promotes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to ADP, generating ATP and releasing pyruvate. This rate-limiting reaction relies therefore on the enzymatic activity of PKM2. The switching between the high- and low-activity states of PKM2 is subjected to a combination of allosteric mechanisms and fine-tuned regulation by oncogenes and tumor suppressor genes. These regulatory mechanisms involve primarily post-translational modifications of PKM2. Recent findings suggest that phosphorylation contributes to the regulation of PKM2 activity.Here, we describe an in vitro kinase assay we used to assess PKM2 phosphorylation by c-Jun N-terminal kinase (JNK), a master regulator of apoptosis, cell proliferation, and differentiation. While the use of phospho-specific antibodies gives information in terms of measuring the effects of a given kinase on its substrate, specific antibodies for newly identified phospho-groups are not readily available. The in vitro kinase assay allows the immediate measuring of phosphorylation of any substrate of interest. Although there are several options that do not use radioactive materials, we continue to rely on this biochemical method for robust quantitation of results. More interestingly, this protocol can be easily adapted to measure the activity of other kinases by using their specific substrates.

Screening Kinase-Dependent Phosphorylation of Key Metabolic Reprogramming Regulators

Lepore, Alessio
Co-primo
Writing – Original Draft Preparation
;
2023-01-01

Abstract

: Aerobic glycolysis has been commonly linked to cell proliferation, especially in cancer cells where it serves to generate sufficient energy and biosynthesis of new cell constituents needed for cell growth and division. The M2 isoform of pyruvate kinase (PKM2) catalyzes the last reaction of the glycolytic process. PKM2 promotes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to ADP, generating ATP and releasing pyruvate. This rate-limiting reaction relies therefore on the enzymatic activity of PKM2. The switching between the high- and low-activity states of PKM2 is subjected to a combination of allosteric mechanisms and fine-tuned regulation by oncogenes and tumor suppressor genes. These regulatory mechanisms involve primarily post-translational modifications of PKM2. Recent findings suggest that phosphorylation contributes to the regulation of PKM2 activity.Here, we describe an in vitro kinase assay we used to assess PKM2 phosphorylation by c-Jun N-terminal kinase (JNK), a master regulator of apoptosis, cell proliferation, and differentiation. While the use of phospho-specific antibodies gives information in terms of measuring the effects of a given kinase on its substrate, specific antibodies for newly identified phospho-groups are not readily available. The in vitro kinase assay allows the immediate measuring of phosphorylation of any substrate of interest. Although there are several options that do not use radioactive materials, we continue to rely on this biochemical method for robust quantitation of results. More interestingly, this protocol can be easily adapted to measure the activity of other kinases by using their specific substrates.
2023
9781071632468
9781071632475
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/130369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact