This paper presents an application of Canonical duality theory to the solution of contact problems with Coulomb friction. The contact problem is formulated as a quasi-variational inequality which solution is found by solving its Karush–Kuhn–Tucker system of equations. The complementarity conditions are reformulated by using the Fischer–Burmeister complementarity function, obtaining a non-convex global optimization problem. Then canonical duality theory is applied to reformulate the non-convex global optimization problem and define its optimality conditions, finding a solution of the original quasi-variational inequality. We also propose a methodology for finding the solutions of the new formulation, and report the results on well-known instances from literature

Canonical Dual Approach for Contact Mechanics Problems with Friction

Latorre, Vittorio
;
2017-01-01

Abstract

This paper presents an application of Canonical duality theory to the solution of contact problems with Coulomb friction. The contact problem is formulated as a quasi-variational inequality which solution is found by solving its Karush–Kuhn–Tucker system of equations. The complementarity conditions are reformulated by using the Fischer–Burmeister complementarity function, obtaining a non-convex global optimization problem. Then canonical duality theory is applied to reformulate the non-convex global optimization problem and define its optimality conditions, finding a solution of the original quasi-variational inequality. We also propose a methodology for finding the solutions of the new formulation, and report the results on well-known instances from literature
2017
978-3-319-58016-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11695/118067
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact